a2 United States Patent
Luby et al.

US009413494B2

US 9,413,494 B2
Aug. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54) FEC-BASED RELIABLE TRANSPORT
CONTROL PROTOCOLS FOR MULTIPATH
STREAMING

(71) Applicant: QUALCOMM Incorporated, San Digo,
CA (US)

(72) Inventors: Michael George Luby, Berkely, CA
(US); Lorenz Christoph Minder,
Evanston, IL (US)

(73) Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 85 days.

(21) Appl. No.: 14/157,290

(22) Filed: Jan. 16, 2014
(65) Prior Publication Data
US 2014/0201587 Al Jul. 17,2014

Related U.S. Application Data

(60) Provisional application No. 61/753,884, filed on Jan.
17, 2013, provisional application No. 61/818,106,
filed on May 1, 2013.

(51) Imt.ClL
Ho4L 1/00 (2006.01)
HO4L 1/06 (2006.01)
(Continued)
(52) US.CL
CPC HO4L 1/1819 (2013.01); HO4L 1/0002

(2013.01); HO4L 1/0643 (2013.01); HO4L 1/22
(2013.01); HO4L 1/0009 (2013.01); HO4L
2001/0093 (2013.01); HO4N 21/6375 (2013.01)
(58) Field of Classification Search
CPC ... HO04L 1/0045; HO4L 1/0643; HO4L 1/08;

200

HO4L 1/1819; HO4L 1/0057; HO4L 1/0041;
HO4L 2001/0093; HO4L 1/0083; HO4L
1/0002; HO4L 1/22; HO4L 1/0009; HO4AN

21/6375
USPC ottt 714/751
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,625,881 A
6,307,487 Bl

4/1997 Sandler et al.
10/2001 Luby

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2005036361 A2 4/2005

WO 2008005981 Al 1/2008

WO 2012018339 Al 2/2012
OTHER PUBLICATIONS

Adler, et al., “A Modular Analysis of Network Transmission Proto-
cols,” Proceedings of the Fifth Israeli Symposium on Theory of
Computing and Systems, Apr. 1997, 17 pp.

(Continued)

Primary Examiner — James C Kerveros
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

A client device includes one or more processors configured to
receive, from a server device, forward-error corrected data via
a plurality of parallel network paths, determine losses of the
data over each of the network paths, and send data represent-
ing the losses of the data over each of the network paths to the
server device. Additionally or alternatively, a client device
includes one or more processors configured to receive a first
set of encoding units for a first block, wherein the first set of
encoding units includes fewer than a minimum number of
encoding units needed to recover the first block, after receiv-
ing the first set of encoding units, receive a second set of
encoding units for a second block, and after receiving the
second set of encoding units, receive a third set of encoding
units including one or more encoding units for the first block.

23 Claims, 16 Drawing Sheets

300
Data

210 200
SENDING TRANSPORT RECEIVING TRANSPORT
PROTOCOL PROTOCOL
SENDER RELIABILITY RECEIVER RELIABILITY
CONTROL PROTOCOL. CONTROL PROTOCOL.
220 280

SENDER RATE CONTROL RECEIVER RATE
PROTOCOL CONTROL PROTOLCOL
230 20
| -250 |—240 240 | -250
Data packets Data packets
Reliability Control Reliabitity Control
Rate Protocot Rate Protocol
1 N i
NETWORK
Reliability Controf 280 Rellability Control
Rate Protocol Nl Rate Protocol

US 9,413,494 B2

Page 2
(51) Int.ClL 2012/0151302 Al* 6/2012 Lubyetal. ..o 714/776
HO04L 1/18 2006.01 2012/0207068 Al 8/2012 Watson et al.
HO4L 1/22 (2006 01) 2012/0246538 Al 9/2012 Wu
(01) 2012/0272124 Al* 10/2012 Huangcccccevere 714/776
HO4N 21/6375 (2011.01) 2013/0195106 Al 8/2013 Calmon et al.
2014/0201587 Al* 7/2014 Lubyetal. ..o 714/751
(56) References Cited 2014/0325302 Al* 10/2014 Leeetal. 714/751
2014/0362864 Al* 12/2014 Sugimoto . .. 370/400
U.S. PATENT DOCUMENTS 2015/0095743 Al* 4/2015 Satoccoovevvvevvenrennn 714/774
OTHER PUBLICATIONS
6,320,520 B1 11/2001 Luby
g’iﬁ ’ggg g% gggg% Is“lli;ba}r’ dia Carle, et al., “Multipath FEC Scheme for the ATM Adaptation Layer
6.486.803 Bl 11/2002 Luby ét al. AALS,” IFIP - The International Federation for Information Process-
6,614,366 B2 9/2003 Luby ing, Springer US, Oct. 1998, pp. 234-245.
7,158,568 B2 1/2007 Park et al. Cui, et al., “FMTCP: A Fountain Code-Based Multipath Transmis-
7447,235 B2 11/2008 Luby et al. sion Control Protocol”, Distributed Computing Systems (ICDCS)
7,643,480 B2* 1/2010 Liu .cocoovvvvriienn HO4L 1/0002 IEEE 32nd International Conference on, IEEE, 18 Jun. 2012, pp.
. 370/228 366-375, XP032217879.
7,716,560 Bl N 5;2010 Sprague et al. 714;776 International Search Report and Written Opinion from International
8,023,533 B2* 9/2011 Kureoocooiiiciriis 370/503 Application No. PCT/US2014/011988, dated Apr. 8, 2014, 11 pp.
8,458,567 B2 6/2013 Luby et al. 7
0.043.670 B2* 52015 Sayadi ct al 714/758 Second Written Opinion from International Application No. PCT/
2003/0058958 Al 3/2003 Shokrollahi et al. US2014/011988, dated Dec. 17, 2014, 7 pp. _
2008/0151881 AL* 6/2008 TiU wovooeosoon, HO4L. 1/0002 International Preliminary Report on Patentability from International
370/389 Application No. PCT/US2014/011988, dated Apr. 21, 2015, 9 pp.
2010/0226243 Al* 9/2010 Leeetal.cccoovvvnnrnn 370/216
2012/0131407 Al* 5/2012 Chiaoetal.cccoo...... 714/751 * cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 16 US 9,413,494 B2

100(J)

L

//\g AV *\
Ve b . 1/??0
1 NETWORK }/
ey
160(1) \ 160(K)
N 7t

Receiver end system

Receiver end system

Receiver end system

US 9,413,494 B2

Sheet 2 of 16

Aug. 9,2016

U.S. Patent

020 B1EH
0AUCD Ajgeiiey

¢ Ol

0001014 S18Y

mxmegmz

m
1000104 918y
[auos Aljlgeiey
syeoed eieg

0%¢ - '3 A A

[2%4
TOO0LOHL TOULINOD
ALV UIAIE03Y

$

[L:4
TO20L0d TOMINOD
ALITIIEYIIEY MIAF03Y

TOB0L0MA
LHO4SNYYL DNIAIEOHY

o6z

XTI WAL oS

m
1020104 918y
HRUoD AjliGelsy
s1euoed Bieg

) g 05z~

[t
TOO0L0NHd
TOULINOD dLvd Y20NES

1

[hz44
T030L0Hd TOYULNGD
ALTHEVINTIH ¥3JN3S

00010 T
LHOdSNYYL DNIONIS

@wmﬁ\

U.S. Patent Aug. 9,2016 Sheet 3 of 16 US 9,413,494 B2

Data

220 < _

Sender FEC-based
reliability control protocol

Data
‘ i 330

_____ 320

310~ _ Sender
reliability «<— FEC encoder
control iogic T

| l
Reliability Control ~ =1c0ding units and

Information reliability control
information

350 ..
230 o <

Sender rate control protocol

/
/
1

FIG. 3

U.S. Patent Aug. 9,2016 Sheet 4 of 16 US 9,413,494 B2

A
ﬂ
280 o g
Receiver FEC-based
reliability control protocol
Data
blocks \ 430
410~ Receiver :
N reliability <— dchiger _______ 420
control logic
A
_— Encéding units and
Re'.‘ﬁ?;‘;,‘:aﬁggm‘ reliability control
information
350
\ 340
270 - | P
_ ' ¥

Receiver rate control protocol

FIG. 4

U.S. Patent Aug. 9,2016 Sheet 5 of 16 US 9,413,494 B2

Y, 510 //./ 520 e 530

Encoding
unit 1D

Block No. Encoding unit

Sender data format

s 540 . 550

Needed

Block Number . :
encoding units

Receiver feedback format

FIG. 5

U.S. Patent Aug. 9,2016 Sheet 6 of 16 US 9,413,494 B2

“Time to send
_Sender data?

Yes .
‘é’ / G520
Generate Encoding unit No
from Active block and
send Sendar data

- 530

670
f/
Deactivate

Active block
and activate

~Received Receiver™

. feedback?

next block
Yes Y
640
~Rumber of remaining™~
. needed Encoding units >
“~Jor Active block = 02~
e - Yes

Yes

repare data
for next
black

U.S. Patent Aug. 9,2016 Sheet 7 of 16 US 9,413,494 B2
L Ti0
Aeceivet,
Sender
. datV/
" Yes
- 720
No< Encoding unit fromT™~
780 . the Active block?
// ™ ‘ Yes
rreparg L
and send 730
No| Receiver No =
fand 760
ee{:ﬁé)ack ¥ Add Encoding unit to Active
Discard useless block, update remaining
Encoding unit neseded 10 recover
Yes
~ 740

Receiver
feadback?

FIG. 7

- 770

S Jor Active block = 07 7

~Number of remainin .
needed Encoding units

Yes

: /

Recover Active block,
Prepare to receive next
Active block

U.S. Patent Aug. 9,2016 Sheet 8 of 16 US 9,413,494 B2

810 820

—

First Active block AB 1 Second Active block AB 2 '

Two active blocks

— 830(1).- 830(2)- 830(3).- 830(4).- 830(5).- 830(E).- 8I(T)-- 8I0(3) - 830(9)
(AB1 iAB1 AB1| [AB1| [AB2]| [AB2] \AB1 | [AB2] \AB1 |

Time /

Example data packet sending pattern over time

FIG. 8

U.S. Patent

Aug. 9, 2016 Sheet 9 of 16 US 9,413,494 B2

810 920 830

Block

/ 240
. Encoding
No. Seq. No.

unit ID Encoding unit

Sender data format

95001 26001 970(1} 950(2 860(2) 970(2
- (1) P (1) / (1 P {2) P (2) / {2}

Block Needed Highest Seq.i Block Needed Highest Seq.
Number | encoding units | No. received { Number| encoding units | No. received
. A .
hd Y
I
558 €25
=5 g oo 2

Receiver feedback format

U.S. Patent Aug. 9,2016 Sheet 10 of 16 US 9,413,494 B2

oy

~ 1005
Time to send
Sender data?

Yes 1010

A 4

For each Active block i, let:

B_i = number of needed Encoding units

R_i = number of acked received Encoding units

L_i= B_i- R_i = remaining known needed Encoding units
U_i = number of sent unacked Encoding units

X_i = parameter set by reliability protocol

1015

s there an Active

No < block i such that L_j+ > No
’ Xi-U_i>07? ‘
Yes No
1020 | | 1025
/ v
Letibe th_e earliest such Generate Encoding
Active block unit from the earliest
Generate Encoding unit Acti
from Active block i and ctive b!oclf and send
. corresponding Sender
send corresponding data
Sender data
| |
_ - 1030
eceive
Receiver
eadback?,
1050 Y?s /// 1035
Update information for all
Active blocks
: No 7N 1040 1045
Yes _~Number o~ <
Y _~femaining needed™ Deactivate
Make < Encoding units for >-Yess earliest
block 1060 \e_arliest Active bloc)x/ active
active \-\ =0? block
I | . _,//

S

FIG. 10 £

U.S. Patent Aug. 9,2016 Sheet 11 of 16 US 9,413,494 B2
1105
" Received .
“\Sender data? ve e
™ Update information on
' Active blocks
1115
1145 AEncoding
= Nog_ from an Active 2
Preparg «, Dlock? o~ Yes
and send R L
Receiver o 1120
No | feedback No s e
3 7 P Add Encoding unit to
Discard useless appropriate Active block,
Encoding unit update ali information for
that Active block
Yes

Receiver

FIG. 11

) 1140
Time to send™

™ ~Jeedback? 7 g

, - 1125
Number of
sremaining needed™

T——ho Encoding units for
& U
. earliest Active
™ block = g7
1130
Recover earliest
Active block,

e S

Frepare o recelve
a new Aclive block

US 9,413,494 B2

Sheet 12 of 16

Aug. 9, 2016

U.S. Patent

Wieas

COPIA
o
el

10201044
wodsuel
IBAIBDEY

A a

Tras

7 MO|-4 10}
SESMINTE =AY

(z)ozz}

\!\
A

L MO|-{ 10}
lepwisuel |

—
{Lyozzl

2l "9id

1000104

Hodsuel 1 JOIRIBUSn
lspusg CapIA

Py 7
GLZ) LWIBBNS G0ZL

_O9pPIA
0Lg)

US 9,413,494 B2

Sheet 13 of 16

Aug. 9,2016

U.S. Patent

€L '9ld
1BlLLIO} UoIjeuLIOUl Yorgpaa) yjedijjnl JOAI808Y
NS Z NES 304 I NES ¥O4 ¢ did I Aid
SAIOY wu»_mm%m__m Z mu»_wmwwm | 10} NO3S Z 10} NOIS L
1Semo] NES NS | 1seybi4 | Qid | seubiH | qld
{ ({ T ((((
oseL %@&\ 2)09¢ F\ :mom;\ :89\ 2558l ~ 2)0sel ~ :mmﬁ\ 1)0SE) \
leuwloy 1ax)oed ejep yiednnw Jspuas
did 10}
sjoquiAg Buipoouz 1S3 14ds NgS NO3S aid
GZel _ 0cel \ 8lEL \ GlLEL \\ owm_‘\ GOEL \\

US 9,413,494 B2

Sheet 14 of 16

Aug. 9, 2016

U.S. Patent

¢ MO 10}
JSRUSUBE]

(Lozzl
N -
Gl Uim
SIONDB

L =
Qid yim
SIENOE A

- i8Bpoous
Oivl

s Jsyng
JOCUAS Jiedey

OEE

Sivt

weans
OaDIA

(4 9] B

J8YNg BlEP 82IN0S

B

i

uun o160y

soeqpes
jopueg

yun Jojeisush
HO0|q 92IN0S

nun Joyenbs.
s18) B1eQ]

Jo1RIBUeN)
OSDIA

sz’

omvw@moowoﬁ dodsued] Jspusg

o
gyt

L MO JO)
JBRIUSUBL]

{(Lyozzl

o~
GLak

1A

US 9,413,494 B2

Sheet 15 of 16

Aug. 9,2016

U.S. Patent

Z MOl
10} JBAIBD8Y

AY \\\
{zians)
i

= (4 Uiim
sievoed
DBAIS8Y

{ =
Qi Ui
s1evoed

DOAIB0BY

L MOl
10} 12AIB08Y

(1)c0ct

0L od4

[

iBpooep ”

2iep 82inos
POIDAODDY

Gl "Oid

gest

1BJING BIBD BAIS00Y

qal

1nun 51Boj
prelctefelcty]
JBAIB0aY

\\\
Segl

10001014 Lodsuel] JaaBaay

oedt

WSS
OBPIA
DSIDAODDH

07l

US 9,413,494 B2

Sheet 16 of 16

Aug. 9,2016

U.S. Patent

DBAIaD8
se pabpsiwmouyoe
UDeg 10U SARY

9L 'Did

DOAIBoSl
se pabpsmonoe
uaaq Apesije saey

— S¥O0|(80IN0S BAIDY — S¥D0I0 S2UN0S SAIDEBY|

A

L

TTeyoolq | € oolq
mw.ﬁmm m_@ﬁmm

€ #2014 L 201G 0 %2019
82IN0g 80IN0g 80IN0S

LA

Buipus
10U NG — POUILLISIaP
usaqg sey Buiuubag
— YWOOIg 824N0s usdQ

m@mmgmwmw usag sey
Buipus pue Buuuibeqg
— S¥O0|q 80INOS PBSO|D

US 9,413,494 B2

1
FEC-BASED RELIABLE TRANSPORT
CONTROL PROTOCOLS FOR MULTIPATH
STREAMING

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/753,884, filed Jan. 17,2013, and U.S.
Provisional Application Ser. No. 61/818,106, filed May 1,
2013, the entire contents of each of which are hereby incor-
porated by reference.

TECHNICAL FIELD

This disclosure relates to transport of media data.

BACKGROUND

Devices may perform rapid transmission of data between
end systems over a data communication network using mul-
tiple paths and low-latency handling. Many data communi-
cation systems and high level data communication protocols
offer the convenient communication abstractions of reliable
data transport, and provide rate control, i.e., they automati-
cally adjust their packet transmission rate based on network
conditions. Their traditional underlying implementations in
terms of lower level packetized data transports, such as the
ubiquitous Transport Control Protocol (TCP), suffer when at
least one of the following conditions occurs: (a) the connec-
tion between the sender(s) and the receiver(s) has a large
round-trip time (RTT); (b) the amount of data is large and the
network suffers from bursty and transient losses.

One widely used reliable transport protocol is the Trans-
port Control Protocol (TCP). TCP is a point to point packet
control scheme in common use that has an acknowledgment
mechanism. TCP works well for one-to-one reliable commu-
nications when there is little loss between the sender and the
recipient and the RTT between the sender and the recipient is
small. However, the throughput of the TCP drops drastically
when there is even very little loss, or when there is any
significant latency between the sender and the recipient.

Using TCP, a sender transmits ordered packets and the
recipient acknowledges receipt of each packet. If a packet is
lost, no acknowledgment will be sent to the sender and based
on reception of either later received packets or on a timeout
the sender will resend the packet. With protocols such as TCP,
the acknowledgment paradigm allows packets to be lost with-
out total failure, since lost packets can just be retransmitted,
either in response to a lack of acknowledgment or in response
to an explicit request from the recipient.

TCP provides both reliability control and rate control. That
is, devices implementing TCP ensure that all of the original
data is delivered to receivers and automatically adjust the
packet transmission rate based on network conditions such as
congestion and packet loss. With TCP, the reliability control
protocol and the rate control protocol are intertwined and not
separable. Moreover, TCP’s throughput performance as a
function of increasing RTT and packet loss is far from opti-
mal.

SUMMARY

In general, this disclosure describes techniques related to
forward-error correction (FEC) applied to data sent over a
plurality of parallel network paths. In one example, data may
be reliably transported from a sender to a receiver by orga-
nizing the data to be transported into data blocks, wherein
each data block comprises a plurality of encoding units. The
encoding units of a first data block may be transmitted from

10

15

20

25

30

35

40

45

50

55

60

65

2

the sender to the receiver over multiple paths, i.e., some
encoding units of the first data block are sent over one path
whereas other encoding units of the first data block are sent
over a second path, etc. The sender may detect acknowledg-
ments of receipt of encoding units by the receiver. At the
sender, a probability that the receiver will receive sufficient
encoding units of the first data block from already sent encod-
ing units for the first data block to recover the first data block
at the receiver may be detected and the probability may be
tested against a threshold probability to determine whether a
predetermined test is met. Following the step of testing and
prior to the sender receiving confirmation of recovery of the
first data block at the receiver, when the predetermined test is
met, the sender may transmit encoding units of a second data
block from the sender over the multiple paths. In some
examples, the sender may send encoding units of the second
block before a sufficient number of encoding units have been
sent for the first block for the receiver to recover the first
block, and thus the sender may send additional encoding units
for the first block subsequent to sending at least some encod-
ing units for the second block. Furthermore, the sender may
send encoding units of a block to the receiver before the block
has been fully formed. In some examples, the predetermined
test is a comparison of the probability against the threshold
probability and the predetermined test may be determined to
be met when the probability is greater than the threshold
probability.

In some examples, the sender can also dynamically deter-
mine the size or duration of each block as it is generated,
determine the rate at which the data in blocks is generated,
and determine the rate at which encoding units are sent over
each of the multiple paths to the receiver.

In one example, a computer-readable storage medium has
stored thereon instructions that, when executed, cause a pro-
cessor of a client device to receive, from a server device,
forward-error corrected data via a plurality of parallel net-
work paths, determine losses of the data over each of the
network paths, and send data representing the losses of the
data over each of the network paths to the server device.

In another example, a computer-readable storage medium
has stored thereon instructions that, when executed, cause a
processor of a server device to send, to a client device, for-
ward-error corrected data via a plurality of parallel network
paths, receive, from the client device, data representing losses
of the data sent over each of the network paths, and modify,
based on the data representing the losses, an amount of for-
ward-error correction data sent for subsequent data transmis-
sions over the parallel network paths.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of an example network, sender
end systems, and receiver end systems that may use the teach-
ings of the present disclosure.

FIG. 2 is an illustration of a modular reliable transport
protocol architecture and related system for operating using
such protocol.

FIG. 3 is an example of a sender FEC-based reliability
control protocol architecture and related system for operating
using such protocol.

FIG. 4 is an example of a receiver FEC-based reliability
control protocol architecture and related system for operating
using such protocol.

US 9,413,494 B2

3

FIG. 5 shows one possible set of formats that could be used
by a system implementing a TF reliability control protocol.

FIG. 6 is a flowchart illustrating logic of a system imple-
menting a sender TF reliability control protocol.

FIG. 7 is a flowchart illustrating logic of a system imple-
menting a receiver TF reliability control protocol.

FIG. 8 is an illustration of active blocks.

FIG. 9 is illustration of a possible set of formats that could
be used by an interleaved reliability control protocol.

FIG. 10 is an illustrative example of the logic of a system
implementing a basic sender interleaved reliability control
protocol.

FIG. 11 is an illustrative example of the logic of a system
implementing a basic receiver interleaved reliability control
protocol.

FIG. 12 is a block diagram of a multipath streaming sys-
tem.

FIG. 13 shows one possible set of data formats that could
be used by a multipath streaming system implementing a
multipath reliability control protocol.

FIG. 14 is a block diagram of a multipath streaming sender.

FIG. 15 is a block diagram of a multipath streaming
receiver.

FIG. 16 depicts a snapshot of the different classifications of
source blocks during the operation of the multipath FEC-
based reliability transport control method.

DETAILED DESCRIPTION

Studies by many researchers have shown that, when using
TCP, the throughput (in units of packets per second) of the
data transfer is inversely proportional to the product of the
RTT (in units of seconds), and the square root of the loss rate
on the end-to-end connection. For example, a typical end-to-
end terrestrial connection between the U.S. and Europe has an
RTT of 200 milliseconds and an average packet loss of 2%,
and IP packets are typically around 10 Kilobits in size. Under
these conditions, the throughput of a TCP connection is at
most around 300-400 Kilobits per second (kbps), no matter
how much bandwidth is available end-to-end. The situation is
more severe on a satellite link, where in addition to high
RTTs, information is lost due to various atmospheric effects.

As another example, mobile devices in mobile networks,
3G or LTE networks, are known to experience large RTTs,
dynamic fluctuations in RTTs, and dynamic fluctuations in
available bandwidth. A mobile device may have these expe-
riences for a variety of reasons, including the changing posi-
tion of the mobile device within a cell or moving across cell
boundaries that can cause fluctuations in coverage, variable
loading of the network due to other mobile devices coming
close to or moving away from the cell that is providing cov-
erage to the mobile device, and a variety of other reasons. A
primary reason for TCP’s poor performance in these types of
conditions is that the rate control protocol used by TCP does
not work well in these conditions, e.g., even if the available
bandwidth is high for short periods of time, the TCP protocol
may not react fast enough to increase its transmission rate to
take advantage of the higher available bandwidth before the
available bandwidth decreases again.

Since the reliability control protocol and rate control pro-
tocol used by TCP are inseparable, this implies that the over-
all TCP protocol does not work well in these conditions. One
way to attempt to overcome these limitations of TCP is to use
multiple TCP connections over separate paths to further
increase the aggregate end-to-end throughput. Furthermore,
the requirements of different applications for transport vary,

10

30

40

45

60

4

yet TCP is used fairly universally for a variety of applications
in all network conditions, thus leading to poor performance in
many situations.

For example, for a real-time video streaming application,
the video may be generated in the field on a mobile device and
streamed over multiple TCP connections, over possibly dif-
ferent 3G or 4G/LTE connections, possibly using multiple
mobile devices either tethered to or connected by WiF1i to the
generating mobile device, to a receiving device that is to
reconstruct the original video stream. However, due to the
fluctuations in available bandwidth and variations in RTTs,
these multiple TCP connections may still fail to fully utilize
the available bandwidth. For such a streaming application, the
end-to-end delay requirements might be quite stringent for a
real-time streaming application, and thus there is the further
complication and requirement that the stream is comprised of
a sequence of blocks of data, and enough encoding units sent
over the different TCP connections for each block of data
needs to be received to allow reconstruction of that block of
data of the stream at the receiving device, and generally the
blocks of data are to be consumed or played back at the
receiving device in sequence with the smallest possible delay
between when each block of data is made available (in part or
in whole) at the sender and when the block of data is recon-
structed and made available for playback or consumption at
the receiving device. These requirements can make the capa-
bilities of a TCP-based solution constrained by the slowest
TCP connection, and overall a TCP-based solution may be
quite inferior.

This disclosure includes descriptions of improved reliabil-
ity control and rate control protocols that may be used inde-
pendently, and the same reliability control protocol can be
used with a variety of different rate control protocols so the
actual rate control protocol chosen can be based on applica-
tion requirements and the network conditions in which the
application is run. The paper “A Modular Analysis of Net-
work Transmission Protocols”, Micah Adler, Yair Bartal,
John Byers, Michael Luby, Danny Raz, Proceedings of the
Fifth Israeli Symposium on Theory of Computing and Sys-
tems, June 1997 (hereinafter referred to as “Adler” and incor-
porated by reference herein), introduces a modular approach
to building transport protocols that advocates partitioning a
reliable transport protocol into independent reliability control
and rate control protocols.

For any reliability control protocol, two primary measures
of'its performance are how much buffering is required and its
“goodput.” Buffering is introduced in a reliability control
protocol at both the sender and receiver. Buffering at the
sender occurs, for example, when data is buffered after it is
initially sent until the sender has an acknowledgement that it
has been received at the receiver. Buffering at the receiver
occurs for similar reasons. Buffering is of interest for two
reasons: (1) it directly impacts how much memory the sender
and receiver reliability control protocol uses; (2) it directly
impacts how much latency the sender and receiver reliability
control protocol introduces. Goodput is defined as the size of
the data to be transferred divided by the amount of sent data
that is received at the receiver end system during the transfer.
For example, goodput=1.0 if the amount of data sent in pack-
ets to transfer the original data is the size of the original data,
and goodput=1.0 can be achieved if no redundant data is ever
transmitted.

Adler outlines a reliability control protocol that is largely
independent of the rate control protocol used, which is here-
after referred to as the “No-code reliability control protocol”.
The No-code reliability control protocol is in some ways
similar to the reliability control protocol embedded in TCP, in

US 9,413,494 B2

5

the sense that the original data is partitioned into blocks and
each block is sent in the payload of a packet, and then an exact
copy of each block needs to be received to ensure a reliable
transfer. An issue with the No-code reliability control proto-
col is that, although the goodput is optimal (essentially equal
to one), the buffering that the No-code reliability control
protocol introduces can be substantial when there is packet
loss. Adler proves that the No-code reliability control proto-
col is within a constant factor of optimal among reliability
control protocols that do not use coding to transport the data,
in the sense that the protocol has optimal goodput and prov-
ably is within a constant factor of optimal in terms of mini-
mizing the amount of buffering needed at the sender and
receiver.

One technique that has been used in reliability control
protocols is Forward Error-Correction (FEC) codes, such as
Reed-Solomon codes or Tornado codes, or chain reaction
codes (which are information additive codes.) Using FEC
codes, the original data is partitioned into blocks larger than
the payload of a packet and then encoding units are generated
from these blocks and send the encoding units in packets. One
basic advantage of this approach versus reliability control
protocols that do not use coding is that the feedback can be
much simpler and less frequent, i.e., for each block the
receiver need only indicate to the sender the quantity of
encoding units received instead of a list of exactly which
encoding units are received. Furthermore, the ability to gen-
erate and send more encoding units in aggregate than the
length of the original data block is a powerful tool in the
design of reliability control protocols.

Erasure correcting codes, such as Reed-Solomon or Tor-
nado codes, generate a fixed number of encoding units for a
fixed length block. For example, for a block comprising B
input units, N encoding units might be generated. These N
encoding units may comprise the B original input units and
N-B redundant units. If storage permits, then the sender can
compute the set of encoding units for each block only once
and transmit the encoding units using a carousel protocol.

One problem with some FEC codes is that they require
excessive computing power or memory to operate. Another
problem is that the number of encoding units needed must be
determined in advance of the coding process. This can lead to
inefficiencies if the loss rate of packets is overestimated, and
can lead to failure if the loss rate of packets is underestimated.

For traditional FEC codes, the number of possible encod-
ing units that can be generated is of the same order of mag-
nitude as the number of input units a block is partitioned into.
Typically, but not exclusively, most or all of these encoding
units are generated in a preprocessing step before the sending
step. These encoding units have the property that all the input
units can be regenerated from any subset of the encoding units
equal in length to the original block or slightly longer in
length than the original block.

Chain reaction decoding described in U.S. Pat. No. 6,307,
487 (hereinafter “Luby I” and incorporated by reference
herein) can provide a form of forward error-correction that
addresses the above issues. For chain reaction codes, the pool
of possible encoding units that can be generated is orders of
magnitude larger than the number of the input units, and a
randomly or pseudo randomly selected encoding unit from
the pool of possibilities can be generated very quickly. For
chain reaction codes, the encoding units can be generated on
the fly on an “as needed” basis concurrent with the sending
step. Chain reaction codes allow that all input units of the
content can be regenerated from a subset of a set of randomly
or pseudo randomly generated encoding units slightly longer
in length than the original content.

30

40

45

50

55

6

Other documents such as U.S. Pat. Nos. 6,320,520, 6,373,
406, 6,614,366, 6,411,223, 6,486,803, and U.S. Patent Pub-
lication No. 2003/0058958 (hereafter referred to as “Shok-
rollahi 1), describe various chain reaction coding schemes
and are incorporated herein by reference.

A sender using chain reaction codes can continuously gen-
erate encoding units for each block being sent. The encoding
units may be transmitted via the User Datagram Protocol
(UDP) Unicast, or if applicable UDP Multicast, to the recipi-
ents. Each recipient is assumed to be equipped with a decod-
ing unit, which decodes an appropriate number of encoding
units received in packets to obtain the original blocks.

An existing simple FEC-based reliability control protocol,
hereinafter referred to as the “TF reliability control protocol,”
transmits encoding units for a given block of data until receiv-
ing an acknowledgement from the receiver that enough
encoding units have been received to recover the block, and
then the sender moves on to the next block.

LetRTT be the number of seconds it would take from when
the sender sends a packet until the sender has received an
acknowledgement from the receiver that the packet has
arrived, and let R be the current sending rate of the sender in
units of packets/second, and let B be the size of a block in
units of packets. Using the TF reliability control protocol, the
number of useless packets containing encoding units for a
block sent subsequent to the last packet needed to recover the
block is N=R*RTT. Thus, a fraction f=N/(B+N) of the pack-
ets sent are wasted, and thus the goodput is at most 1-f. For
example, if R=1,000 packets/second, RTT=1 second, and
B=3,000 packets, then {=0.25, i.e., 25% of the received pack-
ets are wasted. Thus, the goodput in this example is a meager
0.75 (compared to a maximum possible goodput of 1.0).

Note also in this example that the size of a block B together
with the rate R implies that the latency introduced by the
simple FEC-based reliability control protocol is at least 4
seconds (each block is transmitted for 4 seconds total), and
requires buffering at least one block, i.e., 3,000 packets of
data. Furthermore, to increase the goodput requires increas-
ing the buffering, or conversely to decrease the buffering
requires decreasing the goodput.

U.S. Pat. No. 7,447,235, naming Luby, et al. (hereafter
referred to as “Luby II””) describes improved FEC-based reli-
ability protocols. However, improved reliability control pro-
tocols for streaming over multiple paths are desirable. Fur-
thermore, providing a corresponding rate control protocol
that can be combined with improved reliability control pro-
tocols to result in a transport protocol suitable for streaming
over multiple paths that maximizes reliability and goodput
and minimizes end-to-end latency is desirable.

In examples in accordance with this disclosure, interleaved
reliability control protocols for multipath transmission may
be used to provide improvements over TCP, the TF reliability
control protocol and the No-code reliability control protocol,
and the FEC-based reliability protocol described in Luby II.
Furthermore, improved rate control protocols and generation
rate protocols are introduced which can be combined with the
improved reliability control protocols to provide a transport
protocol suitable for streaming over multiple paths that maxi-
mizes reliability and goodput and minimizes end-to-end
latency.

With a reliability control protocol, blocks of data are sent as
a series of encoding units from a sender to a receiver and the
receiver acknowledges recovery of the encoding units or the
blocks, thereby allowing the sender to determine whether the
receiver received the data and if not received, retransmit the
data, or transmit other data usable to recover the received
data. One property of some interleaved reliability control

US 9,413,494 B2

7

protocols is that encoding units for different blocks are sent in
an interleaved fashion. Interleaved reliability control proto-
cols have a property that, when combined with virtually any
rate control protocol, they provide an efficient reliable data
transport that minimizes buffering (and the consequent
latency) at the end systems and maximizes the goodput of the
transport.

In accordance with the techniques of this disclosure, inter-
leaved reliability control protocols can be used with an appro-
priate rate control protocol to ensure reliable transfer of data
while maintaining high throughput, even when there is high
loss and/or when there is a large RTT. For example, the rate
control protocol can be as simple as sending at a fixed rate,
and the interleaved reliability control protocol will guarantee
that data is transferred at a rate equal to the fixed rate times the
fraction of packets that arrive successfully, while minimizing
buffering and latency during the transfer.

As an example of the quantitative improvements offered by
the interleaved reliability control protocols introduced here,
suppose that the rate control protocol is to send packets at a
fixed rate of R packets per second, the round-trip time
between a sender and receiver is RTT seconds, and thus
N=R*RTT is the number of unacknowledged packets in
flight. For the No-code reliability control protocol, the total
buffer size B at the sender is at least N*In(N) and the goodput
is approximately 1.0, and there is no possible other trade-off
points between the needed amount of buffering and goodput.
Here, In(x) is defined as the natural logarithm of x. With the
TF reliability control protocol, the total buffer size at the
sender is at least B and the goodput is approximately B/(B+
N), where B is the chosen block size in units of packets and
can be chosen to trade-oft required buffering against goodput.
In contrast, for interleaved reliability control protocols such
asthose described in Luby II, the total buffer size at the sender
is at most B and the goodput is approximately N/(N+X),
where X is a positive integer parameter chosen to trade-off the
required buffering against goodput, and B=N*(1+In((N/X)+
1)) is the buffer size in units of packets.

As an example, if the rate R is 1,000 packets/second and
RTT is one second, then N=1,000 packets. For the No-code
reliability control protocol, the buffer size at the sender is at
least 7,000 packets. For the TF reliability control protocol, if
B is chosen to be 4,000 packets, then the goodput is approxi-
mately 0.80. For the interleaved reliability control protocols
described in Luby II, where X is chosen to be 50, B=4,000
packets (the same value as for the TF reliability control pro-
tocol) and the goodput exceeds 0.95, i.e., at most 5% of the
received packets are wasted. Thus, in this example the inter-
leaved reliability control protocols require far less buffering
than the No-code reliability control protocol with almost the
same optimal goodput, and far exceed the goodput of the TF
reliability control protocol for the same amount of buffering,
i.e., at most 5% wasted transmission for the interleaved reli-
ability control protocols versus 25% for the TF reliability
control protocol.

Virtually any rate control protocol can be used with an
interleaved reliability control protocol to provide a reliable
transport protocol, e.g., send at fixed rate, use a window-
based congestion control similar to TCP, use an equation
based congestion control protocol such as TCP Friendly Rate
Control (TFRC), or use virtually any other rate control pro-
tocol, including the rate control protocols introduced herein.

Subsequent description below describes rate control pro-
tocols that might be suitable for sending data over multiple
independent paths from sender to receiver, as well as describ-
ing enhanced interleaved reliability control protocols that can
be combined with these rate control protocols. Also described

40

45

55

8

are generation rate protocols that can be used to determine
how {fast data should be generated for transmission. Finally,
the description describes examples of ways to combine these
protocols to provide an overall transport protocol that is suit-
able for streaming data from a sender to a receiver over
multiple independent paths that maximizes reliability and
goodput and minimizes end-to-end latency.

In this description, a reliable transport protocol is a proto-
col that reliably transfers data from a sender end system to a
receiver end system over a packet based network in such a
way that all the data is transferred even when there is the
possibility that some of the sent packets are not received.

FIG. 1 is a conceptual diagram illustrating an example of a
network 130, a set of sender end systems 100(1)-100(J), and
a set of receiver end systems 160(1)-160(K) on which a reli-
able transport protocol may operate. Sender end systems 100
may also be described as server devices, and receiver end
systems 160 may be described as client devices. Typically,
such a protocol also includes some mechanisms for adjusting
the packet sending rate, where this sending rate may depend
ona variety of factors including the application into which the
protocol is built, user input parameters, and network condi-
tions between the sender and receiver end systems.

A reliable transport protocol, such as TCP, typically
involves several steps. These steps include ways for end sys-
tems to advertise availability of data, to initiate transfer of
data to other end systems, to communicate which data is to be
transferred, and to perform the reliable transfer of the data.
There are a variety of standard ways for end systems to
advertise availability, to initiate transfer and to communicate
what is to be transferred, e.g., session announcement proto-
cols, session initiation protocols, etc. As these steps are well-
known, they need not be described here in great detail.

Reliable transfer of packet data comprises deciding at each
point in the transfer what data to send in the packets and at
what rate to send the packets. The decisions made at each
point in time can depend on feedback sent from the receiver
end system and on other factors. Typically, the data is pre-
sented at a sender end system as a stream of data, and the
reliable transport protocol is meant to reliably deliver this
stream to the receiver end system in the same order in which
it was sent. Often it is the case that the total length of the
stream is not known before the transfer is initiated.

This disclosure describes examples of modular architec-
ture for reliable transport protocols. Adler describes how any
reliable transport protocol can be thought of as the combina-
tion of a reliability control protocol and a rate control proto-
col. The reliability control protocol is the portion of the over-
all transport protocol that decides what data to place in each
packet during the transfer. The rate control protocol decides
when to send each data packet. In many transport protocols,
the reliability control and rate control protocols are insepara-
bly intertwined in operation, i.e., this is the case for TCP.
However, it is still the case that even such an intertwined
protocol can conceptually be partitioned into a reliability
control protocol and a rate control protocol.

Adler advocates the design of reliable transport protocols
by designing the reliability control protocol and the rate con-
trol protocol independently. The advantage of such an
approach is that the same reliability control protocol can be
used with a variety of rate control protocols, and thus the same
reliability control protocol can be used with the rate control
protocol that is appropriate for the application and the net-
work conditions in which the overall reliable transport pro-
tocol is used. This modular approach to the design can be
quite advantageous, because the same reliability control pro-
tocol can be used with a diverse set of rate control protocols in

US 9,413,494 B2

9

different applications and network environments, thus avoid-
ing a complete redesign of the entire reliable transport proto-
col for each application and network environment. For
example, TCP is used for a variety of applications in different
network environments, and it performs poorly for some of
these applications and network environments due to the poor
throughput it achieves as determined by its rate control pro-
tocol. Unfortunately, because the reliability control protocol
and the rate control protocol are so intertwined in the TCP
architecture, it is not possible to simply use a different rate
control protocol within TCP to improve its throughput per-
formance in those situations where it works poorly.

In the example of FIG. 1, one of sender end systems 100
may use the techniques of this disclosure to transport data via
network 130 to one of receiver end systems 160. For instance,
sender end system 100(1) may send media data to receiver
end system 160(1) using one or more of the techniques of this
disclosure. In one example, sender end system 100(1) may
send forward-error corrected media data to receiver end sys-
tem 160(1) over a plurality of parallel paths through network
130. Such forward-error corrected data may include a plural-
ity of blocks, each of which may be FEC-encoded using a
plurality of encoding units. Thus, for each block, sender end
system 100(1) may send a plurality of encoding units to
receiver end system 160(1).

Receiver end system 160(1) may send data representative
of losses over each of the parallel network paths. One
example of such data is described in greater detail below with
respect to FIGS. 9 and 13. In general, the data may indicate,
for each block, a number of encoding units received and a
highest sequence number received. Additionally or alterna-
tively, the data may indicate, for each packet flow through the
various parallel network paths, a highest sequence number
received. Similarly, sender end system 100(1) may receive the
data sent by receiver end system 160(1) regarding the losses.
Sender end system 100(1) may use this data regarding the
losses to modify how subsequent encoding units are formed,
e.g., including additional FEC data if the losses are higher
than expected, or reducing the amount of FEC data if the
losses are lower than expected. This modification of FEC data
included in the encoding units may be based on an aggrega-
tion of the losses over the parallel network paths.

Additionally or alternatively, sender end system 100(1)
may send encoding units of a block before the block has been
fully formed. For instance, assuming that a current block is K
encoding units in size, sender end system 100(1) may send
one or more encoding units for the current block before all K
encoding units for the current block have been made available
to the sender 100(1). Also, receiver end system 160(1) may
receive one or more encoding units of a subsequent block
before receiving K encoding units for the current block.

FIG. 2 is a block diagram illustrating an example modular
reliable transport protocol architecture advocated in Adler.
The sender transport protocol 210 is partitioned into the
sender reliability control protocol 220 and the sender rate
control protocol 230. The sender reliability control protocol
220 determines what is sent in each data packet, and the
sender rate control protocol 230 determines when each data
packetis sent. The sender reliability control protocol 220 may
place additional reliability control information into each data
packet that can be used by the receiver reliability control
protocol 280 within the receiver transport protocol 290.

The sender reliability control protocol 220 may also
receive reliability control information 250 from the corre-
sponding receiver reliability control protocol 280 within the
receiver transport protocol 290 that is uses to help determine
what is sent in each data packet. Similarly, the sender rate

25

30

35

40

45

55

10

control protocol 230 may place additional rate control infor-
mation into each data packet that can be used by the receiver
rate control protocol 270 within the receiver transport proto-
co0l290. The sender rate control protocol 230 may also receive
rate control information 250 from the corresponding receiver
rate protocol 270 within the receiver transport protocol 290
that is uses to help determine when each data packet is sent.

The reliability control information that is communicated
between the sender reliability protocol 220 and the receiver
reliability protocol 280 can depend on a variety of factors
such as packet loss, and can contain a variety of information
as explained later in some detail. Similarly, the rate control
information that is communicated between the sender rate
control protocol 230 and the receiver rate control protocol
270 can depend on a variety of factors such as packet loss and
the measured round-trip time (RTT). Furthermore, the reli-
ability control information and the rate control information
may overlap, in the sense that information sent in data packets
240 or in the feedback packets 250 may be used for both
reliability control and rate control. Generally, the reliability
control and rate control information sent from the sender
transport protocol 210 to the receiver transport protocol 290
can be sent with data in data packets 240 or sent in separate
control packets 240, or both. These protocols should be
designed to minimize the amount of control information that
needs to be sent from sender to receiver and from receiver to
sender.

For many applications, the data is to be transferred as a
stream, i.e., as the data arrives at the sender end system, it is
to be reliably transferred as quickly as possible to the receiver
end system in the same order as it arrives at the sender end
system. For some applications, the latency introduced by the
overall transport protocol should be minimized, e.g., for a
streaming application, or for an interactive application where
small bursts of data are to be transmitted back and forth as
quickly as possible between two end systems. Thus, the over-
all latency introduced by the transport protocol should be
minimized.

The sender reliability control protocol 220 and the receiver
reliability control protocol 280 typically both require buffers
to temporarily store data. Generally, the data that is buffered
at the sender reliability control protocol 220 includes at least
the earliest data in the stream for which the sender reliability
control protocol 220 has not yet received an acknowledge-
ment of recovery from the receiver reliability control protocol
280 up to the latest data in the stream that the sender reliability
control protocol 220 has started to send in data packets. The
size of the buffer at the receiver reliability control protocol
280 is generally at least the amount of data in the stream from
the earliest data not yet recovered up to the latest data for
which data packets have been received.

The buffering requirements of the sender reliability control
protocol 220 has a direct impact on how much temporary
storage space is required by the sender reliability control
protocol 220, and how much latency the sender reliability
control protocol 220 introduces into the overall reliable data
transfer. The buffering requirements of the receiver reliability
control protocol 280 have a similar impact. Thus, it is impor-
tant to minimize the buffering requirements of both the sender
reliability control protocol 220 and the receiver reliability
control protocol 280.

The reliability control protocol determines what is sent in
each data packet. In order to utilize the connection between
the end systems efficiently, it is important that the sender
reliability control protocol 220 send as little redundant data in
packets as possible, in order to ensure that whatever data
packets are received at the receiver reliability control protocol

US 9,413,494 B2

11

280 are useful in recovering portions of the original data
stream. The goodput of the reliability control protocol is
defined to be the length of the original stream of data divided
by the total length of data packets received by the receiver
reliability control protocol 280 during the recovery of the
original stream of data. A goodput goal is for the reliability
control protocol to result in a goodput of 1.0 or nearly so, in
which case the minimum amount of data is received in order
to recover the original stream of data. In some reliability
control protocols, the goodput may be less than 1.0, in which
case some of the transmitted data packets are wasted. Thus, it
is important to design reliability control protocols so that the
goodput is as close to 1.0 as possible in order to efficiently use
the bandwidth consumed by the data packets that travel from
the sender end system to the receiver end system.

One solution that has been used in reliability control pro-
tocols is that of Forward Error-Correction (FEC) codes, such
as Reed-Solomon codes or Tornado codes, or chain reaction
codes (which are information additive codes) such as those
described in Luby I or Shokrollahi I. Original data is parti-
tioned into blocks larger than the payload of a packet and then
encoding units are generated from these blocks and send the
encoding units in packets. Erasure correcting codes, such as
Reed-Solomon or Tornado codes, generate a fixed number of
encoding units for a fixed length block. For example, for a
block comprising input units, N encoding units might be
generated. These N encoding units may comprise the B origi-
nal input units and N-B redundant units.

A FEC-based reliability control protocol is a reliability
control protocol that uses FEC codes. FIG. 3 is a block dia-
gram illustrating an example of a sender FEC-based reliabil-
ity control protocol 220, and FIG. 4 is a block diagram illus-
trating an example of a receiver FEC-based reliability control
protocol 280. The sender reliability control logic 310 parti-
tions the original stream of data into data blocks 330, and then
instructs the FEC encoder 320 to generate encoding units for
each block. The sender reliability control logic 310 deter-
mines how encoding units and reliability control information
340 are passed on to a device handling the sender rate control
protocol 230, and it also handles the reliability control infor-
mation 350 that is sent by the receiver FEC-based reliability
control logic 410 shown in FIG. 4.

The sender reliability control logic 310 should ensure that
enough encoding units are received by the receiver FEC-
based reliability control protocol 280 shown in FIG. 4 to
ensure that each block is recovered. All blocks may be of
essentially the same length, or the block length may vary
dynamically during the transfer as a function of a variety of
parameters, including the rate at which the stream of data is
made available to the sender, the sending rate of the data
packets, network conditions, application requirements and
user requirements.

Suppose a given block of data is B encoding units in length.
Forsome FEC codes the number of encoding units required to
recover the original block of data is exactly B, whereas for
other FEC codes the number of encoding units required to
recover the original block of data is slightly larger than B. To
simplify the description of the FEC-based reliability control
protocols, it is assumed that B encoding units are sufficient for
the recovery of the data block, where it is to be understood
that a FEC code that requires more than B encoding units in
order to decode a block can be used with a slightly decreased
goodput and a slightly increased buffering requirement.

The receiver reliability control logic 410 in FIG. 4 is
responsible for ensuring that B encoding units are received in
order to decode the data block, and then the FEC decoder 420
is used to recover the data block 430. The receiver reliability

15

25

40

45

12

control logic 410 is responsible for receiving the encoding
units and reliability control information 340 sent from the
sender FEC-based reliability control protocol 220, and for
generating and sending reliability control information 350
that is eventually sent to and processed by the sender reliabil-
ity control logic 310.

The TF reliability control protocol partitions the stream of
data into generally equal size blocks. The overall architecture
is that there is one active data block at any point in time, and
the sender generates and sends encoding units for that data
block until it receives a message from the receiver indicating
that enough encoding units have arrived to reconstruct the
block, at which point the sender moves on to the next block.
Thus, all encoding units for a given block are generated and
sent and the block is recovered before any encoding units for
the subsequent block are generated and sent.

FIG. 5 is a block diagram illustrating one possible set of
formats that could be used by a TF reliability control protocol.
The sender data format in this example describes the format in
which the sender TF reliability control protocol sends encod-
ing units and the corresponding reliability control informa-
tion to the receiver TF reliability control protocol. This
includes the Block number 510 which indicates which block
the encoding unit is generated from, the encoding unit ID 520
which indicates how the encoding unit is generated from the
block, and the encoding unit 530 which can be used by the
FEC decoder within the receiver TF reliability control proto-
col to recover the block. The receiver feedback format
describes the format in which the receiver TF reliability con-
trol protocol sends reliability control information to the
sender TF reliability control protocol. This includes the Block
number 540, which is the block number of the current block
the receiver TF reliability control protocol is receiving encod-
ing units for to recover the block, and Needed encoding units
550 which is the number of additional encoding units the
receiver TF reliability control protocol needs to recover the
block.

FIG. 6is aflowchart illustrating an example of a process for
implementing a sender TF reliability control protocol. In
accordance with this example process, a sender device (such
as one of sender end systems 100 of FIG. 1) continually
checks to see if it is time to send sender data (step 610), which
is determined by the corresponding sender rate control pro-
tocol. If it is time to send sender data, then an encoding unit is
generated from the active block and the sender data is sent
(620). An example of a form for the sender data is the format
shown in FIG. 5. The process also continually checks to see if
receiver feedback has been received 630. An example of a
form for the receiver feedback data is the format shown in
FIG. 5. If there is receiver feedback, then it is processed to
update the information on how many additional encoding
units the receiver needs to recover the active block. It then
checks to see if the number of encoding units needed is zero
640, and if it is, then it sees if the next block in the stream of
data is available 650. If it is not available, it prepares the next
block 660 until it is ready, and then goes on to deactivate the
current active block and activate the next block 670. In gen-
eral, the next block may be being prepared while the current
active block is being transmitted.

It should be understood that each of the protocols described
herein could be implemented by a device or software or
firmware executed by a suitable processor. For example,
implementations could be made using network devices such
as routers and host computers, as well as being implemented
on wireless transmitters, retransmitters, and other wireless

US 9,413,494 B2

13

devices. The protocols described herein can be implemented
in software, has methods, and/or has apparatus configured to
implement such protocols.

FIG. 7 is a flowchart illustrating an example process for
implementing a receiver TF reliability control protocol. In
accordance with the receiver TF reliability control protocol, a
receiver device, such as one of receiver end systems 160 (FIG.
1), may continually check to see if sender data has been
received 710, which is in the sender data format shown in
FIG. 5. If so, then it is checked if the encoding unit within the
sender data is from the active block 720. If the encoding unit
is not from the active block then it is discarded 760, and thus
this is wasted sender data since it is not useful in recovering
any block.

If'the encoding unit is from the active block then it is added
to the set of encoding units already received for the active
block and the needed number of encoding units for the block
is decremented by one 730. It then checks to see if the needed
number of encoding units is zero 740, and if it is then it
recovers the active block using the FEC decoder and prepares
for reception of encoding units for the next active block 750.
The receiver TF reliability control protocol also continually
checks to see if it is time to send receiver feedback 770, which
is determined by the corresponding receiver rate control pro-
tocol. If it is time then receiver feedback is prepared and sent
780, which is in the format of the receiver feedback format
shown in FIG. 5.

Note that this is a partial description of the overall TF
reliability control protocol. For example, it does not specify
the conditions under which receiver feedback is sent by the
receiver TF reliability control protocol. This can be triggered
by reception of received sender data, by a timer that goes off
every so often, or by any combination of these events or any
other events as determined by the receiver rate control proto-
col. Generally, receiver feedback is sent often enough to keep
the sender TF reliability control protocol informed on a regu-
lar basis about the progress of reception of encoding units at
the receiver TF reliability control protocol, and yet not so
often as to consume nearly as much bandwidth as the sender
data containing the encoding units sent from the sender TF
reliability control protocol to the receiver TF reliability con-
trol protocol.

Note that the TF reliability control protocol can be consid-
ered “wasteful” in the following sense. Let B be the size of
each data block in units of encoding units, let R be the rate at
which packets are sent by the rate control protocol, and let
RTT be the round-trip time between the sender and receiver
end systems and let N=R*RTT. Suppose there is no packet
loss between the sender and receiver. Then, after the sender
TF reliability control protocol has sent B encoding units for
an active block (which is enough to recover the block), it
continues to send N additional encoding units until it receives
receiver feedback from the receiver TF reliability control
protocol indicating that enough encoding units have arrived
to recover the block, and all of these N encoding units are
wasted. To recover a block of length B requires sending B+N
encoding units, and thus the goodput is B/(B+N).

IfB is relatively small in comparison to N, then the goodput
is far from optimal, and a lot of the used bandwidth between
the sender and receiver is wasted. On the other hand, if B is
large in comparison to N, then the size of the buffers in the
sender and receiver TF reliability control protocols can be
large, and this also implies that the latency in the delivery of
the data stream at the receiver is large. As an example, sup-
pose the size of an encoding unit is 1 kilobyte, the rate R is
1,000 encoding units per second=1 megabyte per second=8
megabits per second, and RTT is one second. Then

10

15

20

25

30

35

40

45

50

55

60

65

14

N=R*RTT=1 megabyte. If the size of a block is set to B=3
megabytes, then the goodput is only approximately (B/(B+
N))=0.75, i.e., around 25% of the sent encoding units are
wasted. To increase the goodput to, for example, 0.98 so that
only around 2% of the sent encoding units are wasted requires
a very large buffer size of B=49 megabytes. This size buffer
then leads to a latency added by the reliability control proto-
col of at least 50 seconds.

There are many possible variants on the TF reliability
control protocol described above. For example, the sender TF
reliability control protocol could stop sending encoding units
after B encoding units have been sent from a block and wait to
receive receiver feedback to indicate whether or not enough
encoding units have been received to recover the block. If
there is no loss then this variant will not send any encoding
units that will be wasted, but even in this case there is a gap of
RTT time between each block, and if the bandwidth is not
being used for any other purpose, this protocol still leads to a
wasted amount of bandwidth of R*RTT. Furthermore, the
total delivery time will be slower by a factor of B/(B+N) than
is ideal. If there is loss, then this variant will add even further
latencies and slow-downs in delivery, because eventually
additional encoding units will have to be sent to recover the
block in place of the lost encoding units.

The TF reliability control protocol has an advantage over
the No-Code reliability control protocol because any lost
encoding unit can be compensated for by any subsequently
received encoding unit generated from the same block with-
out need for receiver feedback. The primary reason that the
TF reliability control protocol is wasteful is because of the
sequential nature of the protocol, in the sense that the transfer
of each block is completed before the transfer for the next
block begins. The improved reliability control protocols
described herein can be used to interleave the processing of
the blocks in an intelligent fashion.

An illustrative example of interleaving is shown in FIG. 8.
In this example, there are two active blocks, the first active
block AB 1 (810) and the second active block AB 2 (820). The
lower part of FIG. 8 shows an example of a pattern of data
packet sending over time, where each packet is labeled as
either AB 1 or AB 2, depending on whether the corresponding
packet contains an encoding unit for AB 1 or AB 2. In this
example, four packets containing encoding units for AB 1
(830(1), 830(2), 830(3) and 830(4)) are sent first, then two
packets containing encoding units for AB 2 (830(5) and 830
(6)), followed by one packet contain an encoding unit for AB
1 (830(7)), one packet containing an encoding unit for AB 2
(830(8)) and one packet containing an encoding unit for AB 1
(830(9)). In general, the interleaving between encoding units
for different blocks should be designed to maximize goodput
and to minimize the total buffering requirements (and the
consequent introduced latency).

A sender device, such as one of sender end systems 100
(FIG. 1) may send interleaved data to a receiver device, such
as one of receiver end systems 160 (FIG. 1), as shown in FIG.
8. In this manner, FIG. 8 depicts an example of a method
including sending a first set of encoding units for a first block,
wherein the first set of encoding units includes fewer than a
minimum number of encoding units needed to recover the
first block, after sending the first set of encoding units, send-
ing a second set of encoding units for a second block, wherein
the second block is subsequent to the first block in the stream
of data, and after sending the second set of encoding units,
sending a third set of encoding units including one or more
encoding units for the first block. Likewise, FIG. 8 also
depicts an example of a method including receiving a first set
of encoding units for a first block, wherein the first set of

US 9,413,494 B2

15

encoding units includes fewer than a minimum number of
encoding units needed to recover the first block, after receiv-
ing the first set of encoding units, receiving a second set of
encoding units for a second block, and after receiving the
second set of encoding units, receiving a third set of encoding
units including one or more encoding units for the first block.

FIG. 8 portrays an example in which encoding units are
sent for a block before the block is fully formed. For instance,
encoding units for active block AB 1 may be sent before AB
1 is fully formed, i.e., not all of AB 1 is yet available at the
sender when the first encoding units 830(1), 830(2) for AB 1
are sent by the sender, and nevertheless, encoding units of AB
1 may be sent before AB 1 has been fully formed. Addition-
ally or alternatively, AB 2 may be considered not fully
formed, and nevertheless, encoding units of AB 2 may be sent
before AB 2 has been fully formed. For instance, encoding
units 830(4), 380(5) for AB 2 may be sent before all of AB 2
is fully available at the sender. Likewise, FIG. 8 portrays an
example of transmission of encoding units for AB 1 and AB 2
in an interleaved fashion.

FIG. 9 is a block diagram illustrating an example set of
formats that may be used by an interleaved reliability control
protocol. The sender data format describes a format in which
the sender interleaved reliability control protocol could send
encoding units and the corresponding reliability control
information to a receiver interleaved reliability control pro-
tocol. This example includes a Block number 910 which
indicates which block the encoding unit is generated from, a
Sequence number 920 which indicates how many encoding
units have been sent from this block, an encoding unit ID 930
which indicates how the encoding unit is generated from the
block, and an encoding unit 940 which can be used by the
FEC decoder within the receiver interleaved reliability con-
trol protocol to recover the block. The receiver feedback
format describes a format in which the receiver interleaved
reliability control protocol could send reliability control
information to the sender interleaved reliability control pro-
tocol. For each of the active blocks, this includes a Block
number (950(1), 950(2)), how many additional encoding
units are needed to recover the block (960(1), 960(2)) and the
highest sequence number received so far from that block
(970(1), 970(2)).

In this manner, FIG. 9 represents an example in which a
receiving device, such as one of receiver end systems 160,
sends, and a sending device, such as one of sender end sys-
tems 100, receives data representing losses of data over each
of a plurality of parallel network paths, the data representing
the losses including data identifying each of a plurality of
blocks for which encoding units were received, numbers of
encoding units needed for each of the blocks, and data defin-
ing highest sequence numbers received for network packets
related to each of the blocks.

FIG. 10 is a flowchart illustrating an example of logic of a
Basic sender interleaved reliability control protocol. The
example protocol of FIG. 10 may be performed by a sending
device, such as one of sender end systems 100 of FIG. 1. In
this example of the protocol, the Basic sender interleaved
reliability control protocol continually checks to see if it is
time to send sender data 1005, which is determined by the
corresponding sender rate control protocol. If it is time to
send sender data then the Basic sender interleaved reliability
control protocol uses the following set of rules to determine
from which active block to generate and send an encoding
unit.

The Basic sender interleaved reliability control protocol
keeps track of the following variables for each active block i
(1010): B_i is the number of encoding units needed to recover

20

30

40

45

16

that block; R_i be the number of encoding units that the Basic
sender interleaved reliability control protocol knows that the
Basic receiver interleaved reliability control protocol has
received from that block based on received receiver feedback;
L_i=B_i-R_i is the remaining number of unconfirmed
encoding units that the Basic sender interleaved reliability
control protocol knows that the Basic receiver interleaved
reliability control protocol needs to receive to recover the
block; U_i is the number of encoding units sent for the block
but for which an acknowledgement has not yet been received
by the Basic sender interleaved reliability control protocol;
X_iis aparameter that determines how aggressively the Basic
sender interleaved reliability control protocol will send
encoding units for the block.

These variables can be determined as follows: The value of
B_iis determined by the size of the block and the size of each
encoding unit. Note that processing can start on blocks that
are not yet completely available to the sender, i.e., blocks that
are not yet fully formed can become active and encoding units
can be sent for them. In this case, B_i might be determined to
be the number of encoding units needed to recover block 1 if
the block were of the size that is currently available to the
sender, in which case B_i can dynamically grow during the
sending process as more of block i is made available to the
sender until block i is completely formed at which point the
value of B_i remains unchanged. Thus, B_i might start at 1
when the initial part of block 1 is first available, and grow as
more of block i becomes available to the sender until B_i
reaches its final value, i.e., B_i reaches the size of the com-
plete block i.

Generally, each encoding unit is of the same size for a given
block, and sometimes for all blocks, and the size is chosen to
be suitable for the payload of a data packet, e.g., the length of
an encoding unit could be 1024 bytes. The size of each block
may be generally the same or it may vary, or it may depend on
the arrival rate of the data stream at the sender, or it may
depend on the sending rate of data packets, or it may depend
on a combination of these and other factors. The value of R_i
is determined based on receiver feedback received in step
1030. The value of U_i is the difference between the
Sequence number in the last sender data sent containing an
encoding unit for the block and the Highest Sequence number
received in a receiver feedback for the block.

In this manner, a number of encoding units needed to
recover a block (e.g., B_i) may be calculated based on a size
of the block and sizes of encoding units for the block. Like-
wise, anumber of additional encoding units needed to recover
the block (e.g., L_i) may be calculated as the difference
between the number of encoding units needed to recover the
block (e.g., B_i) and the number of received encoding units
(e.g., R_i).

The value of X_i is a function of the overall reliability
control protocol, and as is explained later there are tradeoffs
in the choice of X_i. The value of X_i could remain constant
during the sending of all encoding units for the block, or it
could change value in a variety of different ways, some of
which are explained later. Essentially, X_i at each point in
time is a measure of how many additional encoding units the
Basic sender interleaved reliability control protocol is willing
to send beyond the minimal needed to recover the block
without any additional receiver feedback from the Basic
receiver interleaved reliability protocol. Since L._i is the num-
ber of encoding units needed to recover block i beyond the
already acknowledged received encoding units, and since U_i
is the number of encoding units for block i that are in flight
and not yet acknowledged, then [_i+X_i-U_i is the number

US 9,413,494 B2

17

of additional encoding units for block i that the Basic sender
interleaved reliability control protocol is willing to send at
this point in time.

The tradeoft on the value of X_i is the following. As X_i
increases the goodput decreases, since possibly up to X_i
encoding units beyond the minimal needed to recover active
block i could be received by the Basic receiver interleaved
reliability control protocol. On the other hand the total size of
active blocks decreases as X_i increases, because the number
of packet time slots allocated to complete the reliable recep-
tion of active block 1 increases as X_1i increases. Because X_i
encoding units for block i can be lost and still the Basic
receiver is able to recover the block without waiting for
receiver feedback to trigger transmission of additional encod-
ing units, this allows faster recovery of block i once it
becomes active. It turns out that the tradeoffs between total
buffer size and goodput as a function of X_i are much more
favorable than the corresponding tradeotfs for other reliabil-
ity control protocols such as the TF reliability control proto-
col or the No-code reliability control protocol.

In step 1015, a test is made to determine if there is an active
block i that satisfies the inequality L_i+X_i-U_i>0. The
value of _i is a number of encoding units the receiver would
need to recover the block based on encoding units already
acknowledged by receiver feedback. U_i is the number of
unacknowledged encoding units in flight for this block and
thus [._i-U_i is the number of additional encoding units that
will have to be sent if none of the encoding units in flight are
lost, and thus if L._i-U_i is zero or smaller, then the receiver
will be able to recover the block if all the encoding units in
flight for the block arrive. On the other hand, some of the
encoding units might be lost, and X_1i is the number of addi-
tional encoding units that the sender is willing to send proac-
tively to protect against losses to avoid having to transmit
additional encoding units for the block triggered by subse-
quent receiver feedback.

Thus, if L_i+X_i-U_i>0 then the sender is willing to send
more encoding units for block i, and if it is zero or negative
then the sender is not willing to send more encoding units for
block i. Thus, if in step 1015 there is an active block i that
satisfies [_i+X_i-U_i>0, an encoding unit is generated and
corresponding sender data is sent for the earliest such active
block in step 1020. If there is no such active block then an
encoding unit is generated and corresponding sender data is
sent from the earliest active block among all active blocks in
step 1025. Preferably, the parameters are set in such a way as
to avoid as much as possible having no block satisfy the
condition in step 1015 which forces the execution of step
1025, because essentially step 1025 should be done as a last
resort to clear out the buffers within the Basic sender inter-
leaved reliability control protocol. The sent data in steps 1020
and 1025 may be sent via multiple paths to the same receiver.

Ifthere are active blocks that are not yet completely formed
then step 1015 should be modified to also consider these not
yet completely formed blocks. In one variant, the correspond-
ing condition shown in step 1015 for active but not yet com-
pletely formed blocks should be instead whether or not all of
the source encoding units for the not yet completely formed
active block have been sent or not, and if they have not all
been sent then the remaining unsent source encoding units
can be sent. Thus, in this variant, the number of encoding
units that can be sent for block i is up to B_i, where B_i is the
current number of source encoding units in the partially
formed block i. In a second variant, the corresponding con-
dition shown in step 1015 for active but not yet completely
formed blocks should be instead to set X_i=0, and to retrans-
mit encoding units that have been acknowledged as not

20

25

40

45

55

18

received based on an enhanced receiver feedback that also
indicates which encoding units were lost among the encoding
units that have been acknowledged as either lost or received
Thus, in this variant the condition [._i+X_i-U_i>0 in step
1015 is replaced with the condition I_i-U_i>0 if block i is
active but not yet fully formed. In this case, if all source
encoding units have been sent already but some have been
acknowledged as being lost, then these encoding units can be
resent if the condition L_i-U_i>0 is satisfied.

One variant of the protocol is the following. The number of
Active blocks starts at one, i.e., the first block of the data
stream is activated. Only when there is no active block that
satisfies the condition in step 1015 is anew block in the stream
of data is activated. Using this simple strategy, blocks only
become active blocks when needed, and thus the number of
active blocks, and consequently the buffer size, self-adjusts to
the number needed to guarantee a goodput B_i/(B_i+X_i) for
block i.

Another variant of the protocol is the following. In this
variant the total buffer size always remains the same size (if
all blocks are the same size this means there is always fixed
number of active blocks), whereas the goodput may vary.
Whenever there is no active block that satisfies the condition
in step 1015 then the values of the X_i for the active blocks is
increased until there is an active block that satisfies the con-
dition in step 1015. Whenever it is appropriate the values of
X_iforactive block i is reduced, with the constraint that there
is always an active block that satisfies the condition in step
1015. There are many possible ways to increase and decrease
thevalues ofthe X_i, e.g., increase all values equally, increase
all values proportionally equally, increase the values for the
first active blocks more than the values for the last active
blocks, increase the values for the last active blocks more than
the values for the first active blocks. Similar strategies can be
used to decrease the values of the X_i. One skilled in the art
can think of many other variations as well.

There are many other combinations and extensions of these
variants of the protocol that are too numerous to describe, but
should be obvious to one skilled in the art.

Instep 1030 it is checked to see if any receiver feedback has
been received, and if so all of the parameters are updated
based on this in step 1035, i.e., the parameters R_i, U_i and
X_i for all active blocks i. In step 1040 it is checked to see if
the earliest active block has been acknowledged as fully
recovered, and if so then the earliest active block is deacti-
vated in step 1045 and processing returns to step 1040, and if
not then processing continues on to step 1050. In step 1050 it
is checked to see if another block is ready to become active,
and if so then in step 1060 this next block is made active and
processing returns to step 1050, and if not then processing
continues to step 1005. In general, the next block or several
next blocks may be in preparation while the current active
block is being transmitted, and ready to be activated at or
before the time the earliest active block is to be deactivated.

In this manner, FIG. 10 portrays an example of a method
including sending, to a client device, forward-error corrected
data via a plurality of parallel network paths, receiving, from
the client device, data representing losses of the data sent over
each of the network paths, and modifying, based on the data
representing the losses, an amount of forward-error correc-
tion data sent for subsequent data transmissions over the
parallel network paths. The received data representing the
losses may include, for each of the parallel network paths,
data identifying a highest sequence number received for a
packet flow sent via the respective parallel network path (e.g.,
as discussed below with respect to FIG. 13), and/or data
identifying each of a plurality of blocks for which encoding

US 9,413,494 B2

19

units were received by the client device, numbers of encoding
units needed for each of the blocks, and data defining highest
sequence numbers received by the client device for network
packets related to each of the blocks (e.g., as discussed above
with respect to FIG. 9).

FIG. 11 is a flowchart illustrating an example of the logic of
the Basic receiver interleaved reliability control protocol. In
this version of the protocol, the Basic receiver interleaved
reliability control protocol continually checks to see if sender
data has been received 1105, which for example could be in
the sender data format shown in FIG. 9. If so, it updates its
information on all active blocks in step 1110 and checks to see
if the received encoding unit within the sender data is from an
active block 1115. If the encoding unit is from a block that is
already recovered or from a block that is too far forward in the
data stream to be a current active block then it is discarded in
step 1135, and thus this is wasted sender data since it is not
useful in recovering any block. Otherwise the encoding unit is
added to the pool of encoding units for the active block from
which it was generated and how many encoding units are
needed to recover the active block is updated in step 1120.

The number of needed encoding units for block i is calcu-
lated as B_i minus the number of received encoding units.
There are a variety of ways of communicating the value of B_i
to the Basic receiver interleaved reliability control protocol,
e.g., the value of B_i could be included within each sender
data, the value of B_i could be sent in separate control mes-
sages, the value of B_i could be the same for all blocks and
communicated during session initiation, etc.

It is then checked to see if the needed number of encoding
units for the earliest active block is zero in step 1125, and if it
is then it recovers the active block using the FEC decoder and
prepares for reception of encoding units for a new next active
block in step 1130. The Basic receiver interleaved reliability
control protocol also continually checks to see if it is time to
send receiver feedback 1140, which is determined by the
corresponding receiver rate control protocol. If it is time then
receiver feedback is prepared and sent in step 1145, which for
example could be in the receiver data format shown in FIG. 9.

Note that the above is a partial description of an overall
Basic interleaved reliability control protocol. For example, it
does not specify the conditions under which receiver feed-
back is sent by the Basic receiver interleaved reliability con-
trol protocol. This can be triggered by reception of received
sender data, by a timer that goes off every so often, or by any
combination of these events or any other events as determined
by the receiver rate control protocol. Generally, receiver feed-
back is sent often enough to keep the Basic sender interleaved
reliability control protocol informed on a regular basis about
the progress of reception of encoding units at the Basic
receiver interleaved reliability control protocol, and yet not so
often as to consume nearly as much bandwidth as the sender
data containing the encoding units sent from the Basic sender
interleaved reliability control protocol to the Basic receiver
interleaved reliability control protocol.

The Basic interleaved reliability control protocol can have
a much better tradeoff between goodput and the size of the
buffers than the TF reliability control protocol or the No-code
reliability control protocol. For example, suppose that there
are at most two active blocks for the Basic interleaved reli-
ability control protocol. Let B be the size of each data block in
units of encoding units, let R be the rate at which packets are
sent by the rate control protocol, and let RTT be the round-trip
time between the sender and receiver end systems and let
N=R*RTT, and suppose X is a fixed constant for all active
blocks. In this example, assume that all of these parameters

10

15

20

25

30

35

40

45

50

55

60

65

20

have fixed values, although in general they may vary dynami-
cally during the data transfer, and assume that B>=N.

Suppose there is no packet loss between the sender and
receiver. Then, the Basic sender interleaved reliability control
protocol sends B+X encoding units for the earliest active
block and then sends encoding units from the next active
block until it receives receiver feedback that indicates the
earliest active block has been recovered successfully by the
Basic receiver interleaved reliability control protocol. At this
point the Basic sender interleaved reliability control protocol
deactivates the earliest active block, the next active block for
which some encoding units have already been sent becomes
the earliest active block, and the next block is activated to
become an active block. Thus, B+X encoding units are used to
recover a block of length B, and thus X of the sent encoding
units are wasted.

On the other hand, if B>=N then there will always be an
active block that satisfied the inequality shown in step 1015 of
FIG. 9. Thus, the goodput is B/(B+X), whereas the total size
of the buffer is 2*B if there are two active blocks. As an
example, suppose the size of an encoding unit is 1 kilobyte,
the rate R is 1,000 encoding units per second=1 megabyte per
second=8 megabits per second, and RTT is one second. Then
N=R*RTT=1 megabyte. If the size of a block is 1 megabyte,
which means that B=1,000 encoding units and X is set to 10
encoding units then the goodput is approximately (B/(B+
X))=0.99, i.e., at most 1% of the sent encoding units are
wasted, whereas the total buffer size is only 2 MB, which
means that the Basic sender interleaved reliability control
protocol adds around 2 seconds of latency in this example.
Note that this buffer size is smaller by a factor of 25 than that
of'the sender TF reliability control protocol in the same situ-
ation.

In the example described above where there is no packet
loss, the value of X could be set to zero, increasing the
goodput up to 1.0. However, when there is any packet loss it
turns out that setting X>0 can have significant advantages.
For example, if at most 10 encoding units are lost out of each
1,000 sent in the above example, then an analysis shows that
the same goodput and buffer sizes is achieved with X=10,
whereas this would not be necessarily true with X=0. When
packet loss is more variable and unknown, and in particular
when the number of packets lost per B packets can be more
than X, it still turns out that goodput and buffer sizes that can
be achieved by the Basic interleaved reliability control pro-
tocol are quite good and quantifiably better than what can be
achieved using the TF reliability control protocol or the No-
code reliability protocol.

As another example, suppose the sending rate R in packets
per second and the round-trip time RTT remains constant, and
N=R*RTT. Suppose packet loss is random such that each
packet is lost with probability p. Further suppose that each
block iis of size B_i is the same size C in units of packets, and
that each X_i is the same value Y. Further suppose that the
variant of the protocol described above is used that only
activates anew block when needed. Consider a block from the
time it is first activated till the time it is deactivated because an
acknowledgement that it has been recovered is received from
the receiver. At some time t when C-N packets of the block
have been acknowledged there are F=N+Y packets in flight
that are unacknowledged and the sender knows that the
receiver needs N=F-Y of these packets to recover the block.
At time t+RTT, of the F packets that were in flight for the
block at time t, (I-p)*F of the packets have been received by
the receiver and the sender has received an acknowledgement.

Thus, at time t+RTT the sender knows that the number of
remaining packets that the receiver needs is now N-(l-p)

US 9,413,494 B2

21

*F=p*F-Y and thus the number of packets in flight is now
p*F. Continuing the logic, at time t+i*RTT the sender knows
that the number of remaining packet that the receiver needs is
p i*F-Y and thus the number of packets in flight is p"i*F.
When the number of packets that the sender knows the
receiver needs goes below zero then the block is completed,
and this is true at time t+i*RTT when i satisfies p"i*F-Y<=0.
The smallest value of i when this inequality is true is when i
is approximately In((N/Y)+1)/In(l/p).

Since in each RTT approximately (1-p)*N packets are
received by the receiver, this means that the farthest the sender
protocol could have proceeded in the data stream beyond the
block in consideration by the time the block is acknowledged
as received is at most (In((N/Y)+1)/In(I/p))*(I/p)*N packets.
Noting that (1-p)/In(l/p)<=1 for all values of p, this means that
the size of the buffer is at most C+In((N/Y)+1)*N packets in
length. Of course, this is all assuming that the random process
behaves exactly as its expected behavior, but this does give a
rough idea of how the protocol behaves, at least as Y is nottoo
small. In this case, the goodput is C/(C+Y). Thus, for
example, if RTT=1, R=1,000, C=1,000,Y=50, then N=1,000,
In(1,000/50) is approximately 3, and the buffer size is around
1,000+(3+1)*1,000=5,000 and the goodput is 1,000/(1,000+
50) which is around 0.95.

There are many variants on the Basic interleaved reliability
control protocol described above that should be apparent after
reading this description. For example, as described above, the
sender reliability control protocol could use more than two
active blocks at a time, and this has the potential advantage of
being able to reduce the overall size of the buffers used at the
sender and receiver reliability control protocols at the
expense of more complexity in managing more active blocks.

As another example of a variant, it can be beneficial to use
a random process to determine from which active block an
encoding unit is to be sent. This is because packet loss pat-
terns can be systemic and are not necessarily random, and
thus for any deterministic procedure used to select which
encoding unit to send next there is packet loss pattern such
that some blocks are never recovered but still packets are
delivered to the receiver. For example, consider the loss pat-
tern where whenever the deterministic procedure sends an
encoding unit from a particular active block then that encod-
ing unit is lost, but whenever it sends an encoding unit for any
other active block then that encoding unit arrives at the
receiver.

Then, in this example, the receiver never recovers the
active block even though the receiver still receives encoding
units. To overcome this type of systematic loss, it is advanta-
geous for the sender reliability control protocol to randomize
from which active block to send the next encoding unit. One
simple way to achieve this is for the sender reliability control
protocol to buffer together batches of Q encoding units to be
sent, and then send each batch of Q encoding units in a
random order. More sophisticated methods may also be used,
e.g., for each encoding unit to be sent, assign a dynamically
changing probability that it is sent the next time an encoding
unit is to be sent, where the probability increases the more
times it is not selected. Another variant is to modify step 1020
as shown in FIG. 10 of the Basic sender interleaved reliability
control protocol so that the encoding unit sent is randomly
generated (using an appropriately chosen probability distri-
bution that may favor earlier active blocks and that may vary
dynamically over time) from among the active blocks that
satisfy the condition in step 1015.

If the parameter X_i is used to determine when to send an
encoding unit for active block i, there are many variants on
how to adjust X_i during the transmission. One example is to

25

30

40

45

22

fix X_i to a value and maintain that value throughout the
transmission. For example, X_i could be set to zero, or to
some other fixed value like 10. Another example is to fix X_i
to a value at the beginning of the transmission of encoding
units from active block i, and then X_i is incremented every
time an encoding unit is to be sent and the condition for
sending an encoding unit from active block i is not met. There
are many variants on how X_i can be incremented. As an
example, X_i could be incremented by zero the first N such
times, and incremented by N/B each subsequent time. It is
also possible that at some steps the increment of X_i could be
negative.

As other variants, instead of only using the parameter X_i
for each active block i as described in the Basic interleaved
reliability control protocol, one could use other ways of deter-
mining whether or not an encoding unit should be sent from a
particular active block. For example, an average of the packet
loss probability could be maintained, and then the number of
encoding units allowed to be sent from an active block could
be determined based on the assumption that the recent packet
loss probability is a good predictor for the current packet loss
probability. For example, if the average loss probability is
currently p, then one strategy is to modify step 1015 as shown
in FIG. 10 of the Basic sender interleaved reliability control
protocol so that the condition is L_i+X_i/(1-p)-U_i*(1-p)>0.

The rationale behind this particular choice is that if U_i
encoding units are in flight for active block i, only a fraction
1-p of them will arrive at the Basic receiver interleaved reli-
ability control protocol, and if X_i/(1-p) additional packets are
sent then X_i will arrive at the Basic receiver interleaved
reliability control protocol. Thus, overall on average the Basic
receiver interleaved reliability control protocol will receive
B_i+X_i encoding units for active block i, and the value of
X_iadditional encoding units can be set to be enough to take
into account variability in the packet loss rate to avoid
depending on receiver feedback for the transmission of a
sufficient number of encoding units to recover the block.

Other variants of the interleaved reliability control protocol
take into account the possibility that packets may not arrive in
the same order at the receiver as the sending order. Thus,
subsequent receiver feedback from the receiver may for
example report back a larger number of received encoding
units for a given active block than previous receiver feedback,
even though the highest sequence number received from the
block is the same. Thus, the logic in the Basic interleaved
reliability control protocol can be modified in both the sender
and receiver to accommodate accounting for reordered pack-
ets.

As described earlier, step 1025 of the Basic sender inter-
leaved reliability control protocol as shown in FIG. 10 is
generally to be avoided by setting the parameters appropri-
ately so that at least one active block satisfies condition 1015
at each point in time. A variant on step 1025 is to vary which
active block is chosen from which to generate and send an
encoding unit. For example, an active block can be chosen
randomly in step 1025, or the choice could cycle through the
set of active blocks.

Steps 1040 through 1060 of FIG. 10 describe methods for
inactivating recovered blocks and activating additional
blocks to send. One simple method is to always activate a next
block when the earliest block is inactivated due to recovery,
thus always maintaining the same number of active blocks. A
variant that can save on the total buffer size and the conse-
quent latency is to only activate a next block when it is time to
send an encoding unit from a block that is beyond the latest
current active block.

US 9,413,494 B2

23

For some variants of the Basic interleaved reliability con-
trol protocol, the number of active blocks at any point in time
is fixed. A variant is to allow the number of active blocks to
vary depending on a variety of factors, including at what rate
data is made available for transmission, how much packet loss
is occurring, variability in the sending rate of packets, etc. For
example, under low packet loss conditions and low sending
rate conditions the number of active blocks may be kept
small, but as the loss conditions become worse or the sending
rate increases the number of active blocks may be allowed to
temporarily grow. Thus, buffering and latency vary dynami-
cally depending on the conditions in which the protocol is
operating.

The aggregate size of active blocks may also be allowed to
vary even if the number of active blocks remains fixed. In this
case, the size of each subsequent active block may be difter-
ent than the previous block. For example, as the data avail-
ability rate grows the size of subsequent active blocks may
also grow, and as the sending rate grows the size of subse-
quent active blocks may grow. The length of each active block
may be a function oftime, e.g., at most so much time may pass
before a new block is formed, it may be a function of length,
i.e., each block may be at most so long, or it may be a
combination of these and other factors.

The end of one block and the start of the next block may be
decided automatically by the interleaved reliability control
protocol, it may be determined by an application, or some
combination of these and other factors. For example, a block
of the data stream may have logical meaning to an applica-
tion, e.g., a Group of Pictures block or an I-frame for an
MPEG stream, and thus the way that the interleaved reliabil-
ity control protocol partitions the stream of data into blocks
may respect the boundaries of the logical application blocks.
Alternatively, the application may indicate to the interleaved
reliability control protocol preferred boundaries between
blocks, and the interleaved reliability control protocol tries to
respect these boundaries as well as possible but may still be
allowed to make boundaries between blocks at points besides
those supplied by the application.

Another variant of the interleaved reliability control pro-
tocol is to allow the protocol to not deliver all blocks reliably
in sequence to the receiver, but instead to try as well as
possible to achieve this goal subject to other constraints. For
example, in a streaming application it may be important to
deliver the stream of data as reliably as possible, but there are
also other constraints such as timing constraints on the data
stream. For example, it could be the case that after a certain
time a certain portion of the data is no longer relevant, or that
there are strong limits on how much latency the interleaved
reliability control protocol can introduce, e.g., in an interac-
tive Video conferencing application. In these cases, the sender
interleaved reliability control protocol and receiver inter-
leaved reliability control protocol may be modified to allow
some of the blocks to be skipped before they are completely
recovered.

For example, the sender interleaved reliability protocol
may be constrained to only allow an active block to be active
for a given amount of time, or it may have hard time con-
straints for each block supplied by an application after which
it is no longer allowed to send encoding units for the block, or
it may be allowed to only send a provided maximum number
of'encoding units for each block, or any combination of these
constraints. Similar constraints may be applicable to the
receiver interleaved reliability control protocol. For these
applications, the interleaved reliability control protocol can
be modified to respect these constraints.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some variants of interleaved reliability control proto-
cols, there is one sender and one receiver. Other variants
include but are not limited to: one sender and multiple receiv-
ers; one receiver and multiple senders; multiple senders and
multiple receivers. For example, in the one sender/multiple
receiver variant when the sending channel is a broadcast or
multicast channel, the sender reliability control protocol
could be modified so that the sender computes for each active
block i the value of R_i as the minimum number of received
acknowledged encoding units from any receiver in step 1010
of FIG. 10.

As another example for the one sender/multiple receiver
variant when the sender sends a separate stream of packets to
each receiver, the sender reliability control protocol could be
modified so that the sender computes for each active block i
and for each receiver j the value of R_ij as the number of
received acknowledged encoding units from receiver j for
active block i and computes [._ij=B_i-R_ij in step 1010 of
FIG. 10, and U_ij could be computed as the number of sent
but still unacknowledged encoding units for active block i
sent to receiver j, and then the condition in step 1015 could be
changed to determine if there is an active block i such that, for
some receiver j, L_ij+X_i-U_ij>0.

As another example, for the many sender/one receiver vari-
ant, the receiver reliability control protocol could be modified
so that the receiver receives encoding units concurrently from
multiple senders, for the same or different active blocks, and
sends receiver feedback either by a broadcast or multicast
channel to all senders, or using a separate packet stream with
potentially separate receiver feedback to each sender. As
another example, for the multiple sender/multiple receiver
variant, the modified steps described above for the one
sender/multiple receiver case and the multiple sender/one
receiver case can be combined.

Another variant is that a sender may concurrently be send-
ing multiple data streams, each using a separate instance of a
sender interleaved reliability control protocol, or a version of
a sender interleaved reliability control protocol that takes into
account the different data streams, e.g., the aggregate sending
rate for all packets for all streams may be limited, and thus the
sender may decide to prioritize sending packets for some data
streams over others. Similarly, a receiver may concurrently be
receiving multiple data streams, each using a separate
instance of a receiver interleaved reliability control protocol,
or a version of a receiver interleaved reliability control pro-
tocol that takes into account the different data streams, e.g.,
the aggregate receiving rate for all packets for all streams may
be limited, and thus the sender may decide to prioritize receiv-
ing packets and processing and sending receiver feedback for
some data streams over others.

Any of the above variants can be combined with one
another. For example, the protocol where some blocks may
not be reliably delivered to receivers due to for example to
timing and/or bandwidth limitations can be combined with
the multiple sender/multiple receiver variant.

In this manner, FIG. 11 portrays an example of a method
including receiving, from a server device, forward-error cor-
rected data via a plurality of parallel network paths, determin-
ing losses of the data over each of the network paths, and
sending data representing the losses of the data over each of
the network paths to the server device.

FIG. 12 is block diagram of a multipath streaming system
that may utilize multipath FEC-based reliability transport
control methods in accordance with the techniques of this
disclosure. In this example, a video generator (1205) gener-
ates a video stream (1210), which is received by a sender
transport protocol (1215). The sender transport protocol

US 9,413,494 B2

25

(1215) determines what data to send for the video stream
(1210), and for each piece of data to be sent determines along
which path flow to send it.

For each path flow, a transmitter for that path flow (1220
(1), 1220(2)) sends the data for that path flow over a network
(1222) to be received, at least in part, by a receiver transport
protocol (1225). The receiver transport protocol (1225)
recovers in as full fidelity as possible the original video
stream and produces this video stream (1230) to other
devices, possibly over other networks and through other sets
of'servers, to end user devices play back. Note that video is an
example data stream and non-video streams (e.g., audio
streams or other data streams) can be handled analogously.

By using multiple paths, and by coordinating which paths
are used when, etc., as explained herein, improvements such
as lowered overall latency or higher overall data throughput
can be obtained, which generally imply a higher quality
streaming experience. This can be the case even with the
multiple paths have disparate properties such as individual
latency, bandwidth and loss rate and those properties might,
in addition to varying from path to path, also vary from time
to time. As such, packets that initially are emitted by the video
generator in one order might be received in a different order as
some paths might deliver their packets faster than other paths.

In this architecture, the sender transport protocol (1215)
and the receiver transport protocol (1225) may have a well-
established set of data formats that they use to communicate
with one another, and there may be data flowing from the
sender transport protocol (1215) to the receiver transport
protocol (1225), as well as control and feedback information
that flows from the receiver transport protocol (1225) to the
sender transport protocol (1215).

The number of path flows and the number of transmitters
may be any number, and the numbers may be different, e.g.,
there may be ten path flows and three transmitters, and four of
the path flows may go through a first transmitter (1220(1)),
and three path flows may go through each of a second trans-
mitter and a third transmitter. The transmitters (1220) may be
collocated within the same hardware device as the sender
transport protocol (1215), or the transmitters (1220) may be
with hardware devices that are separate from the hardware
device that hosts the sender transport protocol (1215), and
these devices may communicate with one another based on a
standard transport protocol such TCP or UDP, for example
using Bluetooth or WiFi. The networks over which the trans-
mitters (1220) send their data to the receiver transport proto-
col (1225) may be different for different transmitters, e.g.,
some of the transmitters may send using a 3G network, others
may use LTE, others may use WiFi. The transmitters may use
different operator networks of the same or different type, e.g.,
a first transmitter may use the AT&T network whereas a
second transmitter may use the Verizon network. There may
be intermediate receiving devices previous to the receiver
transport protocol 1225, e.g., a first transmitter may send to a
first server operated by a first CDN whereas a second trans-
mitter may send to a second server operated by a second
CDN, and the first and second servers may what they receive
to the receiver transport protocol 1225.

A Multipath FEC-based Interleaved Reliability Control
Protocol Method is now described with reference to FIG. 13.
FIG. 13 is a conceptual diagram illustrating an example mul-
tipath reliability control protocol data packet format and cor-
responding feedback information format.

As shown at the top of FIG. 13, each data packet comprises
a flow identifier, FID (1305), a sequence number for the FID,
SEQN for FID (1310), a source block number, SBN (1315), a
source block length in units of source symbols, SBL. (1318),

10

15

20

25

30

35

40

45

50

55

60

65

26

an encoding symbol identifier (also called an encoding unit
identifier), ESI (1320), and one or more encoding symbols
(1325). (Encoding symbols are sometimes also called encod-
ing units). The FID (1305) identifies the path flow to which
this packet is to be sent, and the SEQN for FID (1310) is a
number that increments by one for each packet sent to this
flow, and thus the SEQN for FID (1310) is scoped by the FID
(1305).

The SBN (1315) identifies from which source block the
encoding symbol(s) (1325) carried in this packet are gener-
ated from, wherein the SBN is a number that generally incre-
ments by one for each subsequent source block of data to be
sent. The SBL (1318) identifies the number of source symbols
in the source block. The SBL (1318) may be omitted when the
packet carries source symbols, and this is preferable for some
applications since it can be the case, for example see the
description of an open source block below, that the number of
source symbols in the source block is not known, i.e., an open
source block, at the time that at least some of the source
symbols of the source block are sent.

Alternatively, the SBL (1318) may be carried in all data
packets, but its value may be set to zero for packets carrying
source symbols that are sent before the size of the source
block is determined, or the SBL (1318) may be set to zero for
all packets carrying source symbols, or the SBL. (1318) may
be set to the current number of source symbols in the source
block at the time that the packet carrying the source symbols
is sent. The SBL (1318) is preferably set to the number of
source symbols in the source block for all packets carrying
repair symbols. The SBL (1318) may also be partitioned into
two sub-fields, a one-bit flag indicating whether or not the
source block is open or closed, i.e., the flag is set to zero if the
source block size is not determined at the time the packet is
sent (open source block) and the flag is set to one if the source
block size is determined at the time the packet is sent (closed
source block), and the remaining portion of the SBL (1318)
provides the number of source symbols in the source block.

The sender feedback logic unit (1420) may set this SBL
flag to indicate that the source block is closed in the packet
that carries the last source symbol of the source block, in
addition to indicating with this SBL flag that the source block
is closed in all packets that carry repair symbols for this
source block, and in each packet where the flag indicates that
the source block is closed, the SBL size is set to the actual
number of source symbols in the closed source block. The ESI
(1320) identifies which encoding symbol(s) (1325) are car-
ried in this packet for the source block identified by the SBN
(1315), and thus the ESI (1320) is scoped by the SBN (1315).
Each time a new data packet is to be sent along a particular
path flow, the FID of that path flow is placed into the packet,
the SEQN for that FID is incremented by one and placed into
the packet, the SBN of an active source block for which
encoding symbols are to be sent is placed into the packet, the
corresponding ESI of the encoding symbols is placed into the
packet, and the encoding symbols are placed into the packet,
all before the packet is sent.

The receiver transport protocol (1225) generates feedback
to be sent to the sender transport protocol (1215). A possible
receiver feedback information format is shown at the bottom
of FIG. 13. As shown, a receiver transport protocol (1225)
reports back foreach FID (1350(1), 1350(2)), the correspond-
ing highest SEQN received for that FID (1355(1), 1355(2)).
In addition, the receiver transport protocol (1225) reports
back for each active source block the SBN (1360(1), 1360(2))
of that source block together with the number of encoding
symbols received so far for that source block (1365(1)), 1365

@)

US 9,413,494 B2

27

Also, the receiver transport protocol (1225) reports back
the source block number of the lowest active source block
(1370). The lowest active source block number (1370)
reported back by the receiver transport protocol (1225) gen-
erally increased by the receiver transport protocol (1225)
when the current active source block with the lowest source
block number is considered recoverable with sufficient cer-
tainty by the receiver transport protocol (1225) and no further
encoding symbols are needed for the current source block,
and thus this source block is designated as inactive by the
receiver transport protocol (1225). It is also possible that, in
circumstances when not enough encoding symbols are
received in a timely enough manner, that the receiver trans-
port protocol (1225) increases the lowest active source block
number (1370) even when there are source blocks with lower
source block numbers that have not yet been recovered by the
receiver transport protocol.

In should be apparent upon reading this disclosure that
other variations are possible. The system may be augmented
to allow the sender transport protocol (1215) to signal the
lowest active source block number in the sender multipath
data packet format as shown at the top of FIG. 13. For
example, an additional parameter “lowest active source block
number” may be added to the multipath data packet format as
shown at the top of FIG. 13 to allow this signaling from the
sender transport protocol (1215) to the receiver transport
protocol (1225). This functionality then allows the sender
transport protocol (1215) to signal skipping over source
blocks for which it might not be possible to complete the
sending and recovery of those source blocks in a way that
would meet the end-to-end latency requirements of the sys-
tem.

There are many variants of the above. For example, a byte
range can be used instead of the ESI to indicate what source
datais carried in the packet payloads. As another example, the
byte range of the block within the entire stream of data can be
used instead of the SBN and SBL to indicate what source data
is used to generate any FEC data that is sent in the packet
payload, in conjunction with an ESI to indicate what particu-
lar data is sent in the packet payload. As another variant,
encoding symbols from different blocks may included within
the same data packet, and multiple triples of SBN, SBL and
ESI (or their equivalents) can be included in the packet header
to identify the encoding symbols carried in the data packet.
For example, the proportion of symbols carried in a packet for
each active source block may be chosen to be proportional to
the number of symbols that can be currently sent for each such
source block, i.e., the proportion of symbols in the packet to
be sent for active block i is chosen to be proportional to the
current value of L_i+X_i-U_i.

FIG. 14 shows in some more detail a block diagram of the
multipath streaming sender. Any or all of the sender end
systems 100 of FIG. 1 may include components similar to the
multipath streaming sender of FIG. 14. The video stream
(1210) generated by the video generator (1205) is stored
temporarily within the source data buffer (1405) within the
sender transport protocol (1215), as shown in FIG. 14. The
FEC encoder (1410) generates FEC repair symbols for source
blocks that are already formed and places the resulting FEC
repair symbols into a repair symbol buffer (1415) until they
are needed for transmission. The FEC encoder (1410) can
operate on an as-needed basis, generating repair symbols for
active source blocks when they are needed for transmission.
Alternatively, the FEC encoder (1410) can pre-generate a
number of repair symbols for active source blocks so that they
are ready to be sent as soon as needed, and also to reduce the
overhead of calls to the FEC encoder (1410).

10

15

20

25

30

35

40

45

50

55

60

65

28

The triggering of the FEC encoder (1410) to generate addi-
tional repair symbols for a source block can be triggered by a
signal from the sender feedback logic unit (1420) that deter-
mines which additional encoding symbols to send each time
it is possible to send an additional encoding symbol. Thus,
these steps represent examples of steps of a method including
calculating a number of additional encoding units needed for
the block to the server device, and sending data representing
the number of additional encoding units to a sending device,
such as a server device.

A source block is considered to be closed when both its
beginning boundary and ending boundary have been deter-
mined, i.e., the scope of the data within the source block has
been determined when the source block is closed, and it has a
beginning byte index and an ending byte index within the
context of the video stream of data. For example, a first source
block might start at byte index 0 within the video data stream,
and end at byte index 4,432, in which case there are 4,432
bytes of data within the source block that comprise the byte
indices at indices 0 through 4,431. Continuing this example,
the second source block starts at byte index 4,432, but its
ending byte index may not be determined until some later
point in time by the source block generator unit (1425), and
until the ending byte index for the second source block has
been determined the second source block is considered to be
open.

Thus, in general, the video data stream can be thought of as
a sequence of closed source blocks followed by at most one
open source block that is in the process of being determined.
Furthermore, the sequence of source blocks comprises zero or
more inactive source blocks followed by one or more active
source blocks (except at the end of delivery when the entire
video stream has been successfully delivered), wherein inac-
tive source blocks are those that have been successfully deliv-
ered to the receiver transport protocol (1225) and acknowl-
edged to having been successfully delivered to the sender
transport protocol (1215) based on feedback sent from the
receiver transport protocol (1225), or are those source blocks
that have been deemed too late to deliver and are thus are no
longer required to be recovered at a receiver. The source block
generator unit (1425) determines when to close the latest
active source block and thereby start a new active open source
block. When systematic FEC codes are used, i.e., when the
source symbols of a source block are among the encoding
symbols that can be used to recover the source block by an
FEC decoder, then it is possible and preferable to allow send-
ing of encoding symbols, specifically source symbols, for the
active open source block.

Many well-known FEC codes are systematic, e.g., Reed-
Solomon codes as specified in IETF RFC 5510, or the Rap-
torQ codes as specified in IETF RFC 6330, or the Raptor
codes specified in IETF RFC 5053. Sending source symbols
for the active open source block is preferable because this can
reduce the end-to-end latency of the delivery of the video
stream as well as provide higher quality and reliability deliv-
ery within the same end-to-end latency budget. One reason
there is an advantage is because the delivery of the source
block can commence even before the entire source block is
available or its size is known. Once the active open source
block is closed by the source block generator unit (1425) then
repair symbols for this source block can be generated by the
FEC encoder (1410) and stored in the repair symbol buffer
(1415) and can be transmitted when additional encoding sym-
bols for this source block are to be sent in accordance with the
sender feedback logic unit (1420) methods.

Alternatively, there may be no repair symbol buffer (1415),
and the FEC encoder (1410) can generate repair symbols

US 9,413,494 B2

29

on-the-fly for immediate transmission when additional
encoding symbols for this source block are to be sent in
accordance with the sender feedback logic unit (1420) meth-
ods. FIG. 16 depicts inactive and active source blocks, as well
as closed source blocks (a mixture of inactive and active
source blocks) and the at most one open source block (which
is active).

The source block generator unit (1425) can use various
methods to determine when to close the current active open
source block and start the next active open source block. For
example, the source block generator unit (1425) can decide to
close the current active open source block when it receives
information from the sender feedback logic unit (1420) that it
has received feedback from the receiver feedback logic unit
(1525) that indicates a packet has been received that was sent
at or after the point in time that the first packet containing
encoding symbols for the current active open source block
was sent. This point in time can be determined by the sender
feedback logic unit (1420) by recording the current sequence
number for each of the flows at the time when the first packet
containing encoding symbols from the current active open
source block is sent, and then determining that the indication
to the source block generator unit (1425) is to be provided as
soon as the sender feedback logic unit (1420) receives feed-
back from the receiver feedback logic unit (1525) with the
highest sequence number for a flow at least as high as the
current sequence number for that flow at the time of the
recording.

Using this method, the size of the current active open
source block when it is closed and the size of the source block
is determined is approximately an RTT amount of data. Alter-
natively, the source block generator unit (1425) can determine
to close the current active open source block after a fixed
amount of time, e.g., one second after the previous source
block was closed. In this case, if the sending rate is variable
then it is likely that each source block will be of a different
size, whereas if the sending rate is constant then it is likely
that source blocks will be of approximately equal size. As
another alternative, the current active open source block can
be closed by the source block generator unit (1425) as soon as
the size of the open source block reaches a predetermined
size, e.g., 100,000 bytes.

As other alternatives, the source block generator unit
(1425) may use combinations of the above methods to close
the current active open source block, for example closing the
source block as soon as its size has reached a pre-determined
size or until a pre-determined amount of time has passed since
the previous source block was closed, whichever occurs first.
As another example, the source block generator unit (1425)
can close the current active open source block when an indi-
cation of feedback for that source block is first indicated to the
source block generator unit (1425) from the sender feedback
logic unit (1420), or after a fixed amount of time has passed
since the closing of the previous source block, whichever
occurs first.

The sender feedback logic unit (1420) of FIG. 14 handles
the feedback received from the receiver feedback logic unit
(1525) of FIG. 15, which is provided in the format shown in
the bottom of FIG. 13. The sender feedback logic unit (1420)
updates the set of active source blocks based on the received
lowest active SBN (1370). The sender feedback logic unit
(1420) determines when to send the next data packet for the
video stream, to which path flow to send the next data packet,
and from which active source block (or multiple source
blocks) to send the encoding symbols within the data packet.

15

20

25

30

35

40

45

50

55

60

65

30

The sender feedback logic unit (1420) can determine which
active source block to send the next encoding symbol from as
follows.

Using similar notation to that used previously, for each
active source block with SBN=I, let BI be the number of
encoding symbols that need to be received to recover source
block I with some desired level of certainty. For example,
using a Reed-Solomon FEC code, for example as described in
IETF RFC 5510, the value of BI can be equal to the number of
source symbols of the source block and the recovery of the
entire source block is with complete certainty, whereas for
other codes the value of BI may be equal to the number of
source symbols of the source block with almost certainty and
larger values of BI allow improved certainty, e.g., the Rap-
torQ codes described in IETF RFC 6330.

The sender feedback logic unit (1420) can calculate a value
for Bl based on the properties of the FEC code in use and on
the number of source symbols in source block 1. The sender
feedback logic unit (1420) can calculate RI as the highest
value ofthe number of encoding symbols received (1365) that
the sender feedback logic unit (1420) has received from the
receiver feedback logic unit (1525) for source block 1. The
sender feedback logic unit (1420) can calculate LI=BI-R],
which is the number of additional encoding symbols that the
receiver must receive in addition to the number that the sender
knows have been received by the receiver in order to recover
source block I with some specified level of certainty.

Let UI be the number of encoding symbols that have been
sent for source block I but for which no acknowledgement has
yet been received at the sender from the receiver. The sender
feedback logic unit (1420) can calculate Ul based on feed-
back received from the receiver feedback logic unit (1525) as
follows. The sender feedback logic unit (1420) can deter-
mine, for each flow ID value J, the number of encoding
symbols sent for source block I in the range of sequence
numbers for FID=J between the current sequence number C
that is being sent for FID=J by the sender down to the highest
sequence number S for FID=] that the sender feedback logic
unit (1420) has received from the receiver feedback logic unit
(1525) in the feedback information format shown at the bot-
tom of FIG. 13. The sender feedback logic unit (1420) can
make this calculation by saving, for each sequence number K
in the range from S to C for FID=J, how many encoding
symbols for source block I were carried in the packet with
FID=J and sequence number K.

Based on this, the sender feedback logic unit (1420) can
sum the number of such encoding symbols for source block I
were sent to the path flow J within the range of sequence
numbers S+1 through C-1. Then, the sender feedback logic
unit (1420) can sum these quantities over the different path
flows to determine how many encoding symbols Ul in total
have been sent but not yet acknowledged for source block I.
Note that the information provided in data packets and in the
feedback information using flow identifiers and flow
sequence numbers for each flow or path and the methods
described herein allows the sender to accurately calculate the
number of sent but not yet acknowledged (either lost or
received) encoding symbols for each path, and thus allows the
sender to accurately estimate the aggregate number of sent
but not yet acknowledged encoding symbols over all paths.
The sender estimate accuracy is high if there is little differ-
ence between the order that packets are sent to a path and the
order that packet are received (if not lost) from the path,
which is generally the case. As mentioned previously, the
aggregate sending and receiving order of packets sent over
multiple paths, not taking into account over which path the
packets are sent, can be quite different. Thus, one of the

US 9,413,494 B2

31

benefits of providing and using per path information and
feedback is to allow the sender to estimate more accurately
how much data in aggregate to send to minimize sending
redundant data and to minimize end to end latency of recovery
of'blocks of the stream. Thus, the data received by the sender
feedback logic represents an example of tracking and report-
ing and using path specific information when data is to be
reliably streamed over a plurality of parallel network paths
that can experience packet loss and varying data throughputs
and path latencies.

As before, let XI be the number of encoding symbols that
the sender feedback logic unit (1420) has determined can be
sent proactively for source block 1. The sender can calculate
the value of X1 based on specified rules, e.g., X1 is some fixed
fractionof B, e.g., XI=0.05*BI, or other rules similar to those
described previously. Then, the sender feedback logic unit
(1420) determines that another encoding symbol can be sent
for an active closed source block I if LI+XI-UI>0.

The data rate regulator unit (1430) determines for each
flow when a next data packet can be sent to that flow. The data
rate regulator unit (1430) communicates with each transmit-
ter (1220(1)), 1220(2), etc.) to make this determination. If for
example UDP data packets are transmitted, a transmitter
(1220(1)) can determine the size of its UDP send queue with
the TIOCOUTQ ioctl()if Linux or some other Unix-like
operating system is used. By monitoring the send queue size
the transmitter (1220(1)) can avoid excess buffering in the
transmitter (1220(1)), and only ever queue new output pack-
ets when the transmitter (1220(1)) internal sender queue is
low, thus avoiding that the transmitter (1220(1)) accumulates
too much data that has not been sent. If the transmitter (1220
(1)) send queue is kept non-empty, but small, full sending
throughput can be achieved. Thus, each transmitter (1220(1))
for each flow indicates to the data rate regulator unit (1430)
when it can accept another data packet for transmission, at
which point the data rate regulator unit (1430) determines that
a data packet can be sent to the flow associated with that
transmitter (1220(1)). The data rate regulator unit (1430)
receives indications from each of the possible transmitters
(1220(1), 1220(2), etc.) and using the above method, can
determine for each possible flow when the next data packet
for that flow can be sent.

Alternatively, or in addition, a transmitter (1220(1)) can set
the sender window size to a sufficiently small value using the
SO_SNDBUF value. It can then wait for the UDP socket to be
writable for example by using the select()or poll()system
calls, to determine when it is possible to send another data
packet for the flow associated with the transmitter (1220(1)).
This way, the size of the transmitter sender queue does not
have to be constantly polled.

All the transmitters (1220(1), 1220(2), etc.) might be in
communication with the data rate regulator unit (1430) that
determines which data packets to send to each transmitter
(1220(1), 1220(2), etc.) when a transmitter had indicated that
has the capacity to send another data packet to a flow associ-
ated with the transmitter. The communication between trans-
mitters (1220(1), 1220(2), etc.) and the data rate regulator
unit (1430) may be happening on a local network with high
bandwidth, low latency, and low packet loss, and therefore it
might be entirely satisfactory ifthe communicationuses TCP.
In such a setting, a transmitter then runs in the following loop:

Repeat indefinitely:

1. Wait until the transmitter send queue is low (either by

monitoring TIOCOUTQ) or by using a low send buffer,
and select(), as explained above, or both.

10

20

25

30

35

40

45

50

55

60

65

32

2. Send a request for a new packet to the data rate regulator
unit (1430). (For example, send() or write() to the data
rate regulator unit (1430))

3. Wait for a response from the data rate regulator unit
(1430), including the data packet to send. (For example,
use select())

4. Send the data packet over UDP to the network (1222)
(e.g., by using the send() or write() system call)

The data rate regulator unit (1430) does the following:

Repeat indefinitely:

1. Wait for a request from any transmitter (using, e.g.,
select()

2. For each transmitter that requested a new data packet to
send, construct a new data packet to send, and provide it
to the transmitter.

The data rate regulator unit (1430) can also provide infor-
mation to the video generator (1205) to increase the video
stream data rate being generate, decrease the video stream
data rate being generated, or keep the video data rate the
same, wherein this information can be based for example of
the amount of data in the source data buffer (1405), and the
rate at which the data rate regulator unit (1430) is sending data
packets in aggregate along different flows.

The sender feedback logic unit (1420) determines that
another encoding symbol can be sent for the active open
source block I if there is at least one source symbol of source
block I that is available to be sent that has not yet been sent.
The sender feedback logic unit (1420) performs all of the
calculations above using all the feedback and transmission
information available logically at the time when the data rate
regulator unit (1430) indicates that the next data packet car-
rying encoding symbols is to be sent (although the sender
feedback logic unit (1420) may make some or all of the
calculations at any point prior to the time that the next data
packet is to be sent). When the data rate regulator unit (1430)
indicates that the next data packet is to be sent to a particular
flow, the sender feedback logic unit (1420) determines the
active source block I such that I is the lowest source block
number amongst all active source blocks for which encoding
symbols can be sent at that time as determined as described
above by the sender feedback logic unit (1420), and then one
or more encoding symbols for source block I are placed into
that next data packet and it is sent to that flow.

Any or all of the various logical blocks in FIG. 14 may be
implemented in hardware, software, firmware, or a combina-
tion thereof. When implemented in software or firmware, it is
to be understood that requisite hardware may also be pro-
vided, such as one or more computer-readable media include
instructions for performing the described functionality, and
one or more processing units for executing the instructions.

In this manner, FIG. 14 represents an example of a device
including one or more processors configured to send a first
encoding unit for a first block over a first path of the parallel
network paths, after sending the first encoding unit, send a
second encoding unit for a second block over the first path,
and after sending the second encoding unit, send a third
encoding unit for the first block over the first path.

FIG. 15 is a block diagram illustrating in greater detail an
example multipath streaming receiver. Any or all of the
receiving end systems 160 of FIG. 1 may include components
similar to multipath streaming receiver of FIG. 15. Packets
sent by a transmitter for flow 1 (1220(1)) are received (if they
are not lost between transmission and reception) by the cor-
responding receiver for flow 1 (1505(1)), and similarly for the
other flows. All received packets are aggregated by the
receiver transport protocol (1225) into a receive data buffer
(1505). The FEC decoder (1510) is executed to recover active

US 9,413,494 B2

33

source blocks for which enough encoding symbols have been
received to recover the source block, and the recovered source
blocks are placed into the recovered source data buffer
(1520), preferable in order of increasing source block number
so that the recovered video stream (1230) is in the same order
as the original video stream (1210).

The receiver feedback logic unit (1525) monitors the
received packets in the receive data buffer (1505) and gener-
ates feedback information, for example in the format shown
in the bottom of FIG. 13, that is sent to the corresponding
sender feedback logic unit (1420). The receiver feedback
logic unit (1525) can also determine when a source block can
be recovered, based on the maximum SBL (1318) values
received amongst all the data packets received for that source
block and also possibly based on the SBL flag indicating
whether or not the source block is open or closed, and thus the
receiver feedback logic unit (1525) can invoke the FEC
decoder (1510) when it is determined that a source block can
be recovered. Generally, it is preferable that the receiver
feedback logic unit (1525) not declare a source block to be
recoverable if the receiver feedback logic unit has not
received an indication that the source block is closed, for
example as determined by the SBL flag, if present, indicating
that the source block is closed, or by receiving packets car-
rying repair symbols for the source block which provides an
implicit indication that the source block is closed.

When a source block can be recovered, or when a source
block is to be skipped for example due to end-to-end time
constraints, the receiver feedback logic unit (1525) can reset
the lowest active SBN (1370) in the feedback information
provided to the sender feedback logic unit (1420) to an appro-
priately higher SBN value. The receiver feedback logic unit
(1525) determines for each active source block, the number of
received encoding symbols for that source block. The
receiver feedback logic unit (1525) determines, for each flow,
the highest sequence number received for that flow. All of this
information is sent from the receiver feedback logic unit
(1525) to the sender feedback logic unit (1420) on a continu-
ous basis, using for example the receiver multipath feedback
information format provided at the bottom of FIG. 13.

Any or all of the various logical blocks in FIG. 15 may be
implemented in hardware, software, firmware, or a combina-
tion thereof. When implemented in software or firmware, it is
to be understood that requisite hardware may also be pro-
vided, such as one or more computer-readable media include
instructions for performing the described functionality, and
one or more processing units for executing the instructions.

In this manner, FIG. 15 represents an example of a device
including one or more processors configured to receive a first
encoding unit for a first block over a first path of the parallel
network paths, after receiving the first encoding unit, receive
a second encoding unit for a second block over the first path,
and after receiving the second encoding unit, receive a third
encoding unit for the first block over the first path.

In this manner, FIG. 15 represents an example of a device
including one or more processors configured to receive, from
a server device, forward-error corrected data via a plurality of
parallel network paths, determine losses of the data over each
of the network paths, and send data representing the losses of
the data over each of the network paths to the server device.

It is to be recognized that depending on the example, cer-
tain acts or events of any of the techniques described herein
can be performed in a different sequence, may be added,
merged, or left out altogether (e.g., not all described acts or
events are necessary for the practice of the techniques). More-
over, in certain examples, acts or events may be performed

10

15

20

25

30

35

40

45

50

55

60

65

34

concurrently, e.g., through multi-threaded processing, inter-
rupt processing, or multiple processors, rather than sequen-
tially.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any combi-
nation thereof. If implemented in software, the functions may
be stored on or transmitted over as one or more instructions or
code on a computer-readable medium and executed by a
hardware-based processing unit. Computer-readable media
may include computer-readable storage media, which corre-
sponds to a tangible medium such as data storage media, or
communication media including any medium that facilitates
transfer of a computer program from one place to another,
e.g., according to a communication protocol. In this manner,
computer-readable media generally may correspond to (1)
tangible computer-readable storage media which is non-tran-
sitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media
that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclo-
sure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves,
signals, or other transitory media, but are instead directed to
non-transitory, tangible storage media. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk and Blu-ray disc,
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs), general
purpose microprocessors, application specific integrated cir-
cuits (ASICs), field programmable logic arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry. Accord-
ingly, the term “processor,” as used herein may refer to any of
the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addi-
tion, in some aspects, the functionality described herein may
be provided within dedicated hardware and/or software mod-
ules configured for encoding and decoding, or incorporated in
a combined codec. Also, the techniques could be fully imple-
mented in one or more circuits or logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
handset, an integrated circuit (IC) or a set of ICs (e.g., a chip
set). Various components, modules, or units are described in
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not

US 9,413,494 B2

35

necessarily require realization by different hardware units.
Rather, as described above, various units may be combined in
a codec hardware unit or provided by a collection of interop-
erative hardware units, including one or more processors as
described above, in conjunction with suitable software and/or
firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A computer-readable storage medium having stored
thereon instructions that, when executed by a processor of a
client device, cause the processor to:

receive, from a server device, forward-error corrected data

via a plurality of parallel network paths, wherein the
received data comprises a number of encoding units for
a block of data, wherein the instructions that cause the
processor to receive the forward-error corrected data
comprise instructions that cause the processor to execute
a transport protocol including an interleaved reliability
control protocol that is independent of a rate control
protocol of the transport protocol, and wherein the trans-
port protocol is distinct from transmission control pro-
tocol (TCP) and does not include TCP;

determine losses of the data over each of the network paths;

send data representing an aggregation of the losses of the

data over each of the network paths to the server device;
receive one or more additional encoding units for the block
of'data based on the data representing the aggregation of
the losses of the data over each of the network paths; and
recover the block from the received encoding units using
forward-error correction.

2. The computer-readable storage medium of claim 1,
wherein the instructions that cause the processor to send the
data representing the losses comprise instructions that cause
the processor to send data identifying each of a plurality of
blocks for which encoding units were received, numbers of
encoding units needed for each of the blocks, and data defin-
ing highest sequence numbers received for network packets
related to each of the blocks.

3. The computer-readable storage medium of claim 1,
wherein the instructions that cause the processor to send the
data representing the losses comprise instructions that cause
the processor to send, for each of the parallel network paths,
data identifying a highest sequence number received for a
packet flow received via the respective parallel network path.

4. The computer-readable storage medium of claim 1, fur-
ther comprising instructions that cause the processor to:

calculate a number of additional encoding units needed for

the block to the server device; and

send data representing the number of additional encoding

units to the server device.

5. The computer-readable storage medium of claim 4,
wherein the data representing the number of additional
encoding units comprises the data representing the losses of
the data over each of the network paths.

6. The computer-readable storage medium of claim 4,
wherein the instructions that cause the processor to calculate
the number of additional encoding units comprises instruc-
tions that cause the processor to:

calculate a number of encoding units needed to recover the

block based on a size of the block and sizes of the
received encoding units for the block; and

calculate the number of additional encoding units as the

difference between the number of encoding units needed
to recover the block and the number of received encod-
ing units.

10

20

40

45

50

60

36

7. The computer-readable storage medium of claim 1, fur-
ther comprising instructions that cause the processor to:

receive an encoding unit for the block;

determine whether the block is active;

when the block is not active, discard the encoding unit; and

when the block is active, add the encoding unit to a set of

encoding units for the block to be used to recover the
block.

8. The computer-readable storage medium of claim 1,
wherein the instructions that cause the processor to receive
comprise instructions that cause the processor to receive
encoding units for a plurality of blocks such that the encoding
units for the plurality of blocks are interleaved with each
other.

9. The computer-readable storage medium of claim 8,
wherein the instructions that cause the processor to receive
the encoding units comprise instructions that cause the pro-
cessor to:

receive a first encoding unit for a first block over a first path

of the parallel network paths;

after receiving the first encoding unit, receive a second

encoding unit for a second block over the first path; and
after receiving the second encoding unit, receive a third
encoding unit for the first block over the first path.

10. A computer-readable storage medium having stored
thereon instructions that, when executed by a processor of a
server device, cause the processor to:

send, to a client device, forward-error corrected data via a

plurality of parallel network paths, wherein the sent data
comprises a number of encoding units for a block of
data, wherein the instructions that cause the processor to
send the forward-error corrected data comprise instruc-
tions that cause the processor to execute a transport
protocol including an interleaved reliability control pro-
tocol that is independent of a rate control protocol of the
transport protocol, and wherein the transport protocol is
distinct from transmission control protocol (TCP) and
does not include TCP;

receive, from the client device, data representing an aggre-

gation of losses of the data sent over each of the network
paths;

modify, based on the data representing the losses, an

amount of forward-error correction data sent for subse-
quent data transmissions over the parallel network
paths; and

send one or more additional encoding units for the block of

data based on the data representing the aggregation of
the losses of the data over each of the network paths.

11. The computer-readable storage medium of claim 10,
wherein the instructions that cause the processor to receive
the data representing the losses comprise instructions that
cause the processor to receive, for each of the parallel network
paths, data identifying a highest sequence number received
for a packet flow sent via the respective parallel network path.

12. The computer-readable storage medium of claim 10,
wherein the instructions that cause the processor to receive
the data representing the losses comprise instructions that
cause the processor to receive data identifying each of a
plurality of blocks for which encoding units were received by
the client device, numbers of encoding units needed for each
of the blocks, and data defining highest sequence numbers
received by the client device for network packets related to
each of the blocks.

13. The computer-readable storage medium of claim 10,
further comprising instructions that cause the processor to:

receive, from the client device, data representing a number

of additional encoding units needed for the block; and

US 9,413,494 B2

37

send the number of additional encoding units for the block

to the client device.

14. The computer-readable storage medium of claim 13,
wherein the data representing the number of additional
encoding units comprises the data representing the losses of
the data sent over each of the network paths.

15. The computer-readable storage medium of claim 10,
further comprising instructions that cause the processor to:

receive, from the client device, data representing a number

of received encoding units;

calculate a number of encoding units needed to recover the

block based on a size of the block and sizes of the
received encoding units for the block;

calculate a number of additional encoding units as the

difference between the number of encoding units needed
to recover the block and the number of received encod-
ing units; and

send the number of additional encoding units to the client

device.

16. The computer-readable storage medium of claim 10,
wherein the instructions that cause the processor to send
comprise instructions that cause the processor to send encod-
ing units for a plurality of blocks such that the encoding units
for the plurality of blocks are interleaved with each other.

17. The computer-readable storage medium of claim 16,
wherein the instructions that cause the processor to send the
encoding units comprise instructions that cause the processor
to:

send a first encoding unit for a first block over a first path of

the parallel network paths;

after sending the first encoding unit, send a second encod-

ing unit for a second block over the first path; and

after sending the second encoding unit, send a third encod-

ing unit for the first block over the first path.

18. The computer-readable storage medium of claim 10,
further comprising instructions that cause the processor to
send the encoding units for the block of data before the entire
block of data is available to the processor.

19. The computer-readable storage medium of claim 10,
further comprising instructions that cause the processor to:

send a first set of encoding units for a first block, wherein

the first set of encoding units includes fewer than a
minimum number of encoding units needed to recover
the first block;

10

15

20

25

30

35

40

38

after sending the first set of encoding units, send a second

set of encoding units for a second block; and

after sending the second set of encoding units, send a third

set of encoding units including one or more encoding
units for the first block.

20. The computer-readable storage medium of claim 19,
wherein the instructions that cause the processor to send the
first set of encoding units comprise instructions that cause the
processor to send the first set of encoding units before the first
block is fully formed.

21. The computer-readable storage medium of claim 19,
wherein the first block and the second block comprise blocks
of'a plurality of blocks of data for media content, wherein the
instructions that cause the processor to send the first set of
encoding units, the second set of encoding units, and the third
set of encoding units comprise instructions that cause the
processor to send the first set of encoding units, the second set
of'encoding units, and the third set of encoding units via a path
of'a plurality of parallel network paths over which the plural-
ity of' blocks of data are sent.

22. The computer-readable storage medium of claim 21,
further comprising instructions that cause the processor to:

receive data representing losses of the data over each of the

network paths from the client device.

23. The computer-readable storage medium of claim 19,
further comprising instructions that cause the processor to:

receive a first set of feedback data after receiving the first

set of encoding units, wherein the first set of feedback
data includes data identifying the first block, data indi-
cating a number of needed encoding units to recover the
first block, and data defining a highest sequence number
received for network packets related to the first block;
and

receive a second set of feedback data after receiving the

second set of encoding units, wherein the second set of
feedback data includes data identifying the second
block, data indicating a number of needed encoding
units to recover the second block, and data defining a
highest sequence number received for network packets
related to the second block.

#* #* #* #* #*

